No CrossRef data available.
Published online by Cambridge University Press: 20 November 2018
The Neumann operator is an operator on the boundary of a smooth manifold which maps the boundary value of a harmonic function to its normal derivative. The spectrum of the Neumann operator is studied on the curves bounding a family of Riemann surfaces. The Neumann operator is shown to be isospectral to a direct sum of symmetric Jacobi matrices, each acting on l2(ℤ). The Jacobi matrices are shown to be isospectral to generators of bilateral, linear birth-death processes. Using the connection between Jacobi matrices and continued fractions, it is shown that the eigenvalues of the Neumann operator must solve a certain equation involving hypergeometric functions. Study of the equation yields uniform bounds on the eigenvalues and also the asymptotics of the eigenvalues as the curves degenerate into a wedge of circles.