Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-25T17:05:57.089Z Has data issue: false hasContentIssue false

Invariants and Coinvariants of the Symmetric Group in Noncommuting Variables

Published online by Cambridge University Press:  20 November 2018

Nantel Bergeron
Affiliation:
Mathematics and Statistics, York University, 4700 Keele St., Toronto, ON, M5A 4T5 e-mail: [email protected], e-mail: [email protected], e-mail: [email protected]
Christophe Reutenauer
Affiliation:
LaCIM, Université du Québec à Montréal, C.P. 8888, succursale Centre-ville, Montréal, QC, H3C 3P8 e-mail: [email protected]
Mercedes Rosas
Affiliation:
Mathematics and Statistics, York University, 4700 Keele St., Toronto, ON, M5A 4T5 e-mail: [email protected], e-mail: [email protected], e-mail: [email protected]
Mike Zabrocki
Affiliation:
Mathematics and Statistics, York University, 4700 Keele St., Toronto, ON, M5A 4T5 e-mail: [email protected], e-mail: [email protected], e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We introduce a natural Hopf algebra structure on the space of noncommutative symmetric functions. The bases for this algebra are indexed by set partitions. We show that there exists a natural inclusion of the Hopf algebra of noncommutative symmetric functions in this larger space. We also consider this algebra as a subspace of noncommutative polynomials and use it to understand the structure of the spaces of harmonics and coinvariants with respect to this collection of noncommutative polynomials and conclude two analogues of Chevalley’s theorem in the noncommutative setting.

Keywords

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2008

References

[BC] Bergman, G. and Cohn, P., Symmetric elements in free powers of rings. J. London Math. Soc. 1(1969), 525–534.Google Scholar
[BR] Berstel, J. and Reutenauer, C., Rational series and their languages. EATCS Monographs on Theoretical Computer Science 12. Springer-Verlag, Berlin, 1988.Google Scholar
[Ch] Chevalley, C., Invariants of finite groups generated by reflections. Amer. J. Math. 77(1955), 778–782.Google Scholar
[Co] Comtet, L., Sur les coefficients de l’inverse de la série formelle C. R. Acad. Sci. Paris Sér. A-B 275 (1972), A569A572.Google Scholar
[KT] Krob, D. and Thibon, J.-Y., Noncommutative symmetric functions. IV. Quantum linear groups and Hecke algebras at q = 0. J. Algebraic. Combin. 6(1997), no. 4, 339–376.Google Scholar
[Ma] Macdonald, I. G., Symmetric Functions and Hall Polynomials. Second edition. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1995.Google Scholar
[Mo] Muir, T., A Treatise on the Theory of Determinants in the Historical Order of Development. Dover Publications, New York, 1960.Google Scholar
[PR] Poirier, S. and Reutenauer, C., Algèbre de Hopf des tableaux. Ann. Sci. Math. Québec, 19 (1995), no. 1, 7990.Google Scholar
[R] Reutenauer, C., Free Lie Algebras. LondonMathematical Society Monographs. New Series, 7. Oxford Science Publications. The Clarendon Press, Oxford University Press, New York, 1993.Google Scholar
[RS] Rosas, M. and Sagan, B., Symmetric functions in noncommuting variables. Trans. Amer. Math. Soc. 358(2006), no. 1, 215–232.Google Scholar
[Sa] Sagan, B., The symmetric group. Representations, combinatorial algorithms, and symmetric functions. Second edition. Graduate Text in Mathematics 203. Springer-Verlag, New York, 2001.Google Scholar
[Sl] Sloane, N. J. A., editor, The On-Line Encyclopedia of Integer Sequences. 2003. (Electronic http://www.research.att.com/_njas/sequences/.Google Scholar
[St] Steinberg, R., Invariants of finite reflection groups. Canad. J. Math. 12(1960), 616–618.Google Scholar
[Sw] Sweedler, M. E., Hopf Algebras. W. A. Benjamin, 1969.Google Scholar
[T] Thibon, J.-Y., Lectures on noncommutative symmetric functions. In: Interaction of Combinatorics and Representation Theory, MSJ Mem. 11, Math. Soc. Japan, Tokyo, 2001, pp. 3994.Google Scholar
[W] Wolf, M. C., Symmetric functions of noncommutative elements. Duke Math. J. 2(1936), no. 4, 626–637.Google Scholar