Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-20T08:27:40.310Z Has data issue: false hasContentIssue false

Inflectional Convex Space Curves

Published online by Cambridge University Press:  20 November 2018

Tibor Bisztriczky*
Affiliation:
University of Calgary, Calgary, Alberta
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let Φ be a regular closed C2 curve on a sphere S in Euclidean three-space. Let H(S)[H(Φ) ] denote the convex hull of S[Φ]. For any point pH(S), let O(p) be the set of points of Φ whose osculating plane at each of these points passes through p.

1. THEOREM ([8]). If Φ has no multiple points and pH(Φ), then |0(p) | ≧ 3[4] when p is [is not] a vertex of Φ.

2. THEOREM ( [9]). a) If the only self intersection point of Φ is a doublepoint and pH(Φ) is not a vertex of Φ, then |O(p)| ≧ 2.

b) Let Φ possess exactly n vertices. Then

  • (1) |O(p)| ≦ nforpH(S) and

  • (2) if the osculating plane at each vertex of Φ meets Φ at exactly one point, |O(p)| = n if and only if pH(Φ) is not vertex.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1984

References

1. Barner, M., Über die Mindestanzahl stationärer Schmiegebenen bei geschlossenen streng-konvexen Raumkurven, Abh. Math. Sem. Univ. Hamburg 20 (1956), 196215.Google Scholar
2. Bisztriczky, T., On the singularities of almost-simple plane curves, Pac. J. Math. 109 (1983), 257273.Google Scholar
3. Bisztriczky, T., On the singularities of plane curves, (to appear).CrossRefGoogle Scholar
4. Haupt, O. and Künneth, H., Geometrische Ondnumgen (Springer-Verlag, Berlin, 1967).Google Scholar
5. Möbius, A. F., Über die Grundformen des Linien dritter Ordnung (Ges. Werke II, Leipzig, 1886).Google Scholar
6. Mohrmann, H., Die Minimalzahl der stationären Ebenen eines räumlichen Ovals, Sitz. Ber. kgl Bayerischen Akad. Wiss. Math. Phys. Kl. (1917), 13.Google Scholar
7. Park, R., Topics in direct differential geometry, Can. J. Math. 24 (1972), 98148.Google Scholar
8. Serge, B., Alcuneproprietà differenziali in grande delle curve chiuse sghembe, Rend. Mat. 6 (1968), 237297.Google Scholar
9. Weiner, J. L., Global properties of spherical curves, J. Diff. Geom. 12 (1977), 425434.Google Scholar