Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-23T08:47:27.662Z Has data issue: false hasContentIssue false

Imbedding C1 into H1

Published online by Cambridge University Press:  20 November 2018

Jingzhi Tie*
Affiliation:
Department of Mathematics University of Toronto Toronto, Ontario M5SIA1 e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This article gives a direct proof of Theorem 7.58 of Greiner [4]. This result implies that the classical Mikhlin-Calderón-Zygmund calculus for the principal value convolution operators on ℂ is, in a natural way, the limit of the Laguerre calculus for principal value convolution operators on ℍ1 = ℂ x ℝ.

Keywords

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1995

References

1. Beals, R., Gaveau, B., Greiner, P.C. and Vauthier, J., The Laguerre Calculus on the Heisenberg group: II,, Bull. Sci. Math. 110(1986), 225288.Google Scholar
2. Beals, R. and Greiner, P.C., Calculus on Heisenberg Manifolds, Ann. of Math. Stud. 119, Princeton University Press, Princeton, 1988.Google Scholar
3. Folland, G.B. and Stein, E.M., Estimates for the d b-Complex and Analysis on the Heisenberg Group,, Comm. Pure Appl. Math. 27(1974), 429522.Google Scholar
4. Greiner, P.C., On the Laguerre Calculus of Left-Invariant Convolution (Pseudo-Differential) Operators on Heisenberg Group, Séminaire Goulaouic-Meyer-Schwartz XI, 1980.1981, 139.Google Scholar
5. Greiner, P.C., Imbeding C” into Hn, Proc. Sympos. Pure Math. 43(1985), 133147.Google Scholar
6. Greiner, P.C. and Stein, E.M., Estimates for the -Neumann Problem, Math. Notes 19, Princeton University Press, Princeton, 1977.Google Scholar
7. Magnus, W., Oberhettinger, F. and Soni, R.P., Formulas and Theorems for the Special Functions of Mathematical Physics, Die Grundlehren Math. Wiss. 52, Springer-Verlag, New York Inc., New York, 1966.Google Scholar
8. Markett, C., Mean Cesaro summability of Laguerre expansion and norm estimates with shifted parameter,, Anal. Math. 8(1982), 1937.Google Scholar
9. Nagel, A. and Stein, E.M., Lectures on Pseudo-differential operators: Regularity Theorems and Applications to Non-elliptic Problems, Math. Notes 24, Princeton University Press, Princeton, 1979.Google Scholar
10. Peetre, J., The Weyl transform and Laguerre polynomials, Matematiche 27(1972), 301323.Google Scholar
11. Szegö, G., Orthogonal Polynomials, Amer. Math. Soc. Colloq. Publ. 23, Amer. Math. Soc, Providence, Rhode Island, 1939.Google Scholar