Published online by Cambridge University Press: 20 November 2018
Evaluation subgroups of the homotopy groups have been objects of extensive study recently by Gottlieb, Haslam, Jerrold Siegel, G. E. Lang (Jr), etc. In [8] one of the authors has introduced the notions of ‘cyclic' and ‘cocyclic’ maps and studied generalizations of evaluation subgroups and their duals in the set up of Eckmann-Hilton duality. This paper continues the study of these generalized Gottlieb and dual Gottlieb subsets. All the spaces, except the function spaces, will be arc connected locally compact CW-complexes with base point at a vertex. For any X, Y the set of base point preserving homotopy classes of maps of X to Y is denoted by [X, Y].