No CrossRef data available.
Article contents
Global and non Global Solutions for Some Fractional Heat Equations With Pure Power Nonlinearity
Published online by Cambridge University Press: 20 November 2018
Abstract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
The initial value problem for a semi-linear fractional heat equation is investigated. In the focusing case, global well-posedness and exponential decay are obtained. In the focusing sign, global and non global existence of solutions are discussed via the potential well method.
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 2017
References
[1]
Abe, S. and Thurner, S., Anomalous diffusion in view ofEinsteins 1905 theory of Brownian motion.
Physica A
356 (2005), no. 2-4, 403–407.Google Scholar
[2]
Adams, D. R., Sobolev spaces.
Academic Press,
New York, (1975).http://dx.doi.org/10.1090/S0002-9939-2013-12177-5
Google Scholar
[3]
Barrios, B., Peral, I., Soria, E., and Valdinoci, E., A Widder's type theorem for the heat equation with nonlocal diffusion,
Arch. Ration. Mech. Anal.
213(2014), no. 2, 629–650.
http://dx.doi.org/10.1007/s00205-014-0733-1
Google Scholar
[4]
Brezis, H. and Casenave, T., A nonlinear heat equation with singular initial data.
J. Anal. Math.
68(1996), 277–304. http://dx.doi.org/10.1007/BF02790212
Google Scholar
[5]
Christ, M. and Weinstein, M.,Dispersion of small amplitude solutions of the generalized Korteweg-de Vries equation.
J. Funct. Anal.
100(1991), 87–109.
http://dx.doi.Org/10.1016/0022-1236(91 )90103-C
Google Scholar
[6]
Galaktionov, V. A. and Pohozaev, S. I., Existence and blow-up for higher-order semi-linear parabolic equations: majorizing order-preserving operators.
Indiana Univ. Math. J.
51(2002), no. 6, 1321–1338.http://dx.doi.Org/10.1512/iumj.2OO2.51.2131
Google Scholar
[7]
Hajaiej, H., Molinet, L., Ozawa, T., and Wan, B., Necessary and sufficient conditions for the fractional Gagliardo-Nirenberg inequalities and applications to Navier-Stokes and generalized
boson equations.
RIMS Kokyuroku Bessatsu B26, RIMS, Kyota,
2011, pp. 159–175.Google Scholar
[8]
Haraux, A. and Weissler, F. B., Nonuniqueness for a semilinear initial value problem.
Indiana Univ. Math. J.
31(1982), 167–189. http://dx.doi.org/10.1512/iumj.1982.31.31016
Google Scholar
[9]
Ibrahim, S., Majdoub, M., Jrad, R., and Saanouni, T., Local well posedness of a 2D semilinear heat
equation.
Bull. Belg. Math. Soc. Simon Stevin
21(2014), no. 3, 535–551.Google Scholar
[10]
Keel, M. and Tao, T., Endpoint Strichartz estimates.
Amer. J. Math.
120(1998), 955–980.
http://dx.doi.org/10.1353/ajm.1998.0039
Google Scholar
[11]
Lieb, E. H. and Loss, M., Analysis. Graduate Studies in Mathematics 14, American Mathematical Society, Providence, RI,
1997.Google Scholar
[12]
Lions, P. L., Symetrie et compacité dans les espaces de Sobolev.
J. Funct. Anal.
49(1982), 315–334.http://dx.doi.Org/10.1016/0022-1236(82)90072-6
Google Scholar
[13]
Mellet, A., Mischler, S., and Mouhot, C., Fractional diffusion limit for collisional kinetic equations.
Arch. Ration. Mech. Anal.
199(2011), no. 2, 493–525.http://dx.doi.Org/10.1007/s00205-010-0354-2
Google Scholar
[14]
Palatucci, G. and Pisante, A., Improved Sobolev embedding, profile decomposition and concentration-compactness for fractional Sobolev spaces.
Cal. Var. Partial Differential Equations
50(2014), no. 3, 799–829.http://dx.doi.org/10.1007/s00526-013-0656-y
Google Scholar
[15]
Payne, L. E. and Sattinger, D. H., Saddle points and instability of nonlinear hyperbolic equations.
Israel J. Math.
22(1975), no. 3-4, 273–303. http://dx.doi.org/10.1007/BF02761595
Google Scholar
[16]
Saanouni, T., Remarks on damped fractional Schrödinger equation with pure power nonlinearity.
J. Math. Phys.
56(2015), no. 6, 061502, 14.http://dx.doi.Org/10.1063/1.4922114
Google Scholar
[17]
Vlahos, L., Isliker, H., Kominis, Y., and Hizonidis, K., Normal and anomalous Diffusion: a tutorial.
In: Order and chaos, 10. T. Bountis (ed.), Patras University Press, 2008.Google Scholar
[18]
Weissler, F. B., Local existence and nonexistence for a semilinear parabolic equation in Lp.
Indiana Univ. Math. J.
29(1980), 79–102.http://dx.doi.Org/10.1512/iumj.1 980.29.29007
Google Scholar
[19]
Weissler, F. B., Existence and nonexistence of global solutions for a semilinear heat equation.
Israel J. Math.
38(1981), 29–40.http://dx.doi.org/10.1007/BF02761845
Google Scholar
[20]
Weitzner, H. and Zaslavsky, G. M., Some applications of fractional equations. Chaotic transport and complexity in classical and quantum dynamics.
Commun. Nonlinear Sci. Numer. Simul.
8(2003), no. 3-4 273–281.http://dx.doi.org/10.1016/S1007-5704(03)00049-2
Google Scholar
[21]
Wu, G. and Yuan, J., Well-posedness of the Cauchy problem for the fractional power dissipative equation in critical Besov spaces.
J. Math. Anal. Appl.
340(2008) 1326–1335.http://dx.doi.Org/10.1016/j.jmaa.2007.09.060
Google Scholar
[22]
Zhai, Z., Strichartz type estimates for fractional heat equations.
J. Math. Anal. Appl.
356(2009),
642–658.http://dx.doi.Org/10.1016/j.jmaa.2009.03.051
Google Scholar
You have
Access
- 51
- Cited by