Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T19:59:32.298Z Has data issue: false hasContentIssue false

Generalized Integrals with Respect to Functions of Bounded Variation

Published online by Cambridge University Press:  20 November 2018

R. L. Jeffery*
Affiliation:
Queen's University, Kingston
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A considerable literature has grown up around the analysis of the structure of a function in terms of its derivative, and the structure of functions F(x) which are integrals of various kinds. Some of this relates to derivatives and integrals of F(x) with respect to functions of bounded variation ω(x) (1-6) or, in the case of a paper by Ward (4), with respect to a function of generalized bounded variation in the restricted sense.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1958

References

1. Choquet, C., Applications des propriétés descriptives de la fonction contingent à la théorie de variable réelle et à géométrie différentielle des variétés Cartésiennes, J. Math, pures etappl., 26 (1947), 115-226.Google Scholar
2. Hayes, C. A., Jr. and Pauc, C. Y., Full individual and class differentiation theorems in their relations to halo and Vitali properties, Can. J. Math., 7 (1955), 221274.Google Scholar
3. Jeffery, R. L., Non-absolutely convergent integrals with respect to functions of bounded variation, Trans. Amer. Math. Soc, 34 (1932), 645-675.Google Scholar
4. Lebesgue, H., Leçons sur l'intégration (Paris, 1928).Google Scholar
5. Radon, J., Théorie und Anwendungen der absolut additiven Mengenfunktionen, Wiener Sitzungberichte, 122 (Abt. 11 A) (1913), 1295-1438.Google Scholar
6. Ward, A. J., The Perron-Stieltjes integral, Math. Zeit., 41 (1936), 578-604.Google Scholar