Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-26T01:09:20.264Z Has data issue: false hasContentIssue false

A General form of the Functional LIL for Banach-Valued Brownian Motion

Published online by Cambridge University Press:  20 November 2018

H. Ship-Fah Wong*
Affiliation:
University of Ottawa, Ottawa, Ontario
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In a recent paper [12], C. Mueller proved a general version of the functional LIL which unifies Strassen's LIL and the Lévy modulus of continuity for Brownian motion W(t). His theorem also contains other known forms of the LIL.

For each t ≧ 0, let be a family of points in the first quadrant of the plane. Let r ≦ 0; to each point (s0, l0), we associate a rectangle

Define Ar(t) to be the area of the union of these rectangles up to time t under the measure . Then, Theorem 1 [12, p. 166] states that for an increasing function h such that

the set of limit points of

in C[0, 1] is the closed unit ball of the reproducing kernel Hilbert space (rkhs) associated with Wiener measure.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1984

References

1. Bulinskii, A. B., A new version of the functional LIL, (in Russian) Teoria Veroiatnostei y Primenen Tom 3 (1980), 502511.Google Scholar
2. Carmona, R. et Kôno, N., Convergence en loi et lois du log. itéré pour les vecteurs gaussiens, Zeitschrift f. Wahr. v. Gebiete 36 (1976), 241267.Google Scholar
3. Chan, C., Csôrgô, M. and Revesz, P., Strassen type limit points for moving averages of a Wiener process, Canad. J. Stat. 6 (1978), 5775.Google Scholar
4. Deo, C. M., A strong convergence theorem for stationary Gaussian sequences in a Hilbert space, Proceedings AMS 79 (1980), 101106.Google Scholar
5. Dinculeanu, N., Vector measures (Pergamon Press, Berlin and New York, 1967).CrossRefGoogle Scholar
6. Fernique, X., Regularité des trajectoires des fonctions aléatoires gaussiennes, Springer-Verlag Lect. Notes 480 (1975), 196.Google Scholar
7. Hille, E., Analytic function theory, Vol II (Ginn and Company, 1962).Google Scholar
8. Kuelbs, J., A strong convergence theorem for Banach space valued random variables, Ann. Probability 4 (1976), 744771.Google Scholar
9. Kuelbs, J. and Lepage, R., The law of iter, log for Brownian motion in a Banach space, Transactions AMS 185 (1973), 253264.Google Scholar
10. Lai, T. L., Gaussian processes, moving averages and quick detection problems, Ann. Probability 1 (1973), 825837.Google Scholar
11. Mangano, G. C., On Strassen-type laws of the iter. log. for Gaussian elements in abstract spaces, Zeitschrift f. Wahr. v. Gebiete 36 (1976), 227239.Google Scholar
12. Mueller, C., A unification of Strassen's law and Lévy's modulus of continuity, Zeitschrift f. Wahr v. Gebiete 56 (1981), 163179.Google Scholar
13. Nisio, M., On the extreme values of Gaussian processes, Osaka J. Math. 4 (1967), 313326.Google Scholar
14. Pathak, P. K. and Quails, C., A law of iter. log. for stationary Gaussian processes. Transactions AMS 181 (1973), 185193.Google Scholar
15. Slepian, D., The one-sided barrier problem for Gaussian noise, Bell System Techn. J. 41 (1962), 463501.Google Scholar
16. Strassen, V., An invariance principle for the law of the iterated logarithm, Zcitschrift f. Wahr v. Gebiete 3 (1964), 211226.Google Scholar
17. Wong, S. F., (1981) On the law of iter, logarithm, J. of Mult. Analysis 11 (1981), 346353.Google Scholar
18. Wong, S. F., (1981) Une note sur les classes inférieures des suites gaussiennes asymptotiquement indépendantes, Revue Canad, de Stat. 2 (1983), 105108.Google Scholar