Article contents
Fundamental Group of Simple C*-algebras with Unique Trace III
Published online by Cambridge University Press: 20 November 2018
Abstract
We introduce the fundamental group $\mathcal{F}\left( A \right)$ of a simple $\sigma $-unital ${{C}^{*}}$–algebra $A$ with unique (up to scalar multiple) densely defined lower semicontinuous trace. This is a generalization of Fundamental Group of Simple${{C}^{*}}$-algebras with Unique Trace I and II by Nawata and Watatani. Our definition in this paper makes sense for stably projectionless ${{C}^{*}}$-algebras. We show that there exist separable stably projectionless ${{C}^{*}}$-algebras such that their fundamental groups are equal to $\mathbb{R}_{+}^{\times }$ by using the classification theorem of Razak and Tsang. This is a contrast to the unital case in Nawata and Watatani. This study is motivated by the work of Kishimoto and Kumjian.
Keywords
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 2012
References
- 2
- Cited by