No CrossRef data available.
Article contents
The Functional Equation of Zeta Distributions Associated With Non-Euclidean Jordan Algebras
Published online by Cambridge University Press: 20 November 2018
Abstract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
This paper is devoted to the study of certain zeta distributions associated with simple non-Euclidean Jordan algebras. An explicit form of the corresponding functional equation and Bernstein-type identities is obtained.
Keywords
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 2006
References
[1]
Atiyah, M. F., Resolution of singularities and division of distributions. Comm. Pure Appl. Math.
23(1970), 145–150.Google Scholar
[2]
Angeli, Y., Analyse harmonique sur les cones satellites. Thèse, Université de Nancy, 2001.Google Scholar
[3]
Barchini, L., Sepanski, M., and Zierau, R., Positivity of zeta distributions and small unitary representations. Preprint (2002).Google Scholar
[4]
Bernstein, I. N., Analytic continuation of generalized functions with respect to a parameter. Functional Anal. Appl.
6(1972), 273–285.Google Scholar
[5]
Bernstein, I. N. and Gel’fand, S. I., Meromorphic property of the function Pλ. Functional Anal. Appl. 3(1969), 68–69.Google Scholar
[6]
Bopp, N. and Rubenthaler, H., Fonction zêta associée à la série principal sphérique de certains espaces symétriques. Ann. Sci. Ec. Norm. Sup. (4)
26(1993), 701–745.Google Scholar
[7]
Bopp, N. and Rubenthaler, H., Une fonction zêta associée à certaines familles d’espaces symétrique réels. C. R. Acad. Sci. Paris Sér. I Math.
325(1997), 355–360.Google Scholar
[8]
Clerc, J.-L., Zeta distributions associated to a representation of a Jordan algebra. Math. Z.
239(2002), 263–276.Google Scholar
[9]
Dvorsky, A. and Sahi, S., Explicit Hilbert spaces for certain unipotent representations. III. J. Funct. Anal.
201(2003), 430–456.Google Scholar
[10]
Faraut, J. and Korányi, A., Analysis on Symmetric Cones. Oxford Mathematical Monographs, Oxford University Press, Oxford, 1994.Google Scholar
[11]
Godment, R. and Jacquet, H., Zeta functions of simple algebras. Lecture Notes in Mathematics 260, Springer-Verlag, Berlin, 1972.Google Scholar
[12]
Gindikin, S. G., Invariant generalized functions in homogeneous domains. Functional. Anal. Appl.
9(1975), 50–52.Google Scholar
[13]
Muller, I., Décomposition orbitale des espaces préhomogènes réguliers de type parabolique commutatif et application. C. R. Acad. Sci. Paris Sér I Math.
303(1986), 495–498.Google Scholar
[14]
Pevsner, M., Analyse conforme sur les algebres de Jordan. Thèse, Université Paris VI 1998.Google Scholar
[15]
Satake, I., Algebraic Structures of Symmetric Domains. Iwanami-Shoten, Tokyo; Princeton University Press, Princeton, NJ, 1980.Google Scholar
[16]
Satake, I. and Faraut, J., The functional equation of zeta distributions associated with formally real Jordan algebras. Tohoku Math. J.
88(1984), 469–482.Google Scholar
[17]
Sato, M. and Shintani, T., On zeta functions associated with prehomogeneous vector spaces.
Ann. of Math.
100(1974), 131–170.Google Scholar
[18]
Sato, M. and Kimura, T., A classification of irreducible prehomogeneous vector spaces and their relative invariants. Nogoya Math. J.
65(1977), 1–155.Google Scholar
[19]
Shintani, T., On the Dirichlet series whose coefficients are class numbers of integral cubic forms. J. Math. Soc. Japan
24(1972), 132–188.Google Scholar
[20]
Tate, J., Fourier analysis in number fields and Hecke's zeta function. In: Algebraic Number Theory, Thompson, Washington, D.C., 1967, pp. 305–347.Google Scholar
You have
Access