Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-22T21:03:54.186Z Has data issue: false hasContentIssue false

Function Spaces Determined byA Levelling Length Function

Published online by Cambridge University Press:  20 November 2018

H. W. Ellis
Affiliation:
Queen's University
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper we introduce the function spaces Lx and Lx(5) which generalize the classical Lp and Lp(B) spaces respectively. For those λ which possess what we call the levelling property we give a discussion of the conjugate space to Lλ(B); our treatment applies, in particular, to the L(W)p(B) and M(W)q(B) spaces defined in [7, §2]. (See also the note at end of this paper.)

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1953

References

1. Banach, S., Théorie des opérations linéaires (Warsaw, 1932).Google Scholar
2. Bochner, S., Integration von Funktionen, deren Werte die Elemente eines Vektorraumes sind, Fund. Math. 20 (1933), 262276.Google Scholar
3. Bochner, S. and Taylor, A. E., Linear Junctionals on certain spaces of abstractly valued functions, Ann. Math., 39 (1938), 913944.Google Scholar
3a. Bourbaki, N., Intégration (Paris, 1952).Google Scholar
4. Dieudonné, J., Sur le théorème de Lebesgue-Nikodym V, Can. J. Math., 3, (1951), 129140.Google Scholar
5. Dunford, Nelson, Uniformity in linear spaces, Trans. Amer. Math. Soc, 44 (1938), 305356.Google Scholar
6. Eberlein, W. F., Weak compactness in Banach spaces I, Proc. Nat. Acad. Sci., 33 (1947), 5153.Google Scholar
7. Halperin, Israel, Function spaces, Can. J. Math., 5 (1953), 273288.Google Scholar
8. Hille, E., Functional analysis and semi-groups (New York, Amer. Math. Soc. Colloquium Publications, vol. 31, 1948).Google Scholar
9. Pettis, B. J., On integration in vector spaces, Trans. Amer. Math. Soc, 44 (1938), 277304.Google Scholar
10. Pettis, B. J., Differentiation in Banach spaces, Duke Math. J., 5 (1939), 254269.Google Scholar
11. Phillips, R. S., On linear transformations, Trans. Amer. Math. Soc, 48 (1940), 516541.Google Scholar
12. Phillips, R. S., On weakly compact subsets of a Banach space, Amer. J. Maths., 65 (1943), 108136.Google Scholar
13. von Neumann, J., Allgemeine Eigenwerttheorie Hermitischer Funktionaloperatoren, Math. Ann., 102 (1929), 49131.Google Scholar
14. Stone, M. H., Notes on integration, I, Proc. Nat. Acad. Sci., 34 (1948), 340.Google Scholar