No CrossRef data available.
Published online by Cambridge University Press: 20 November 2018
We examine the problem of factoring a positive invertible operator in an AF C*-algebra as T*T for some invertible operator T with both T and T-1 in a triangular AF subalgebra. A factorization theorem for a certain class of positive invertible operators in AF algebras is proven. However, we explicitly construct a positive invertible operator in the CAR algebra which cannot be factored with respect to the 2∞ refinement algebra. Our main result generalizes this example, showing that in any AF algebra, there exist positive invertible operators which fail to factor with respect to a given triangular AF subalgebra. We also show that in the context of AF algebras, the notions of having a factorization and having a weak factorization are the same.