Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-28T23:27:32.966Z Has data issue: false hasContentIssue false

Factorization of Affinities

Published online by Cambridge University Press:  20 November 2018

Erich W. Ellers*
Affiliation:
University of Toronto, Toronto, Ontario
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The decomposition of mappings into a minimal number of simple mappings is a common sight in geometry. One well-known instance is the representation of a plane motion by three reflections (see e.g. H. S M. Coxeter [3]) or the representation of equiaffinities by a minimal number of shears or reflections ([14], [5], [7], [8]). Theorems of this nature not only give valuable insight into the nature of the mapping, but they are also often used as a base for characterization theories (see e.g. F. Bachmann [2], M. Götzky [10]). A more abstract version of the same type of results is the famous Cartan-Dieudonné theorem. Its usefulness is indisputable. P. Scherk [13] gave a refined version of this theorem.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1979

References

1. Artin, E., Geometric algebra (Interscience Publishers, New York, 1957).Google Scholar
2. Bachmann, F., Aufbau der géométrie aus dem spiegelungsbegriff (Springer-Verlag, New York-Heidelberg-Berlin, 1973).Google Scholar
3. Coxeter, H. S. M., Introduction to geometry (John Wiley & Sons, New York-Sydney-London-Toronto, 1969).Google Scholar
4. Coxeter, H. S. M., Affinely regular polygons, Abh. Math. Sem. Univ. Hambur. 34 (1969), 3858.Google Scholar
5. Coxeter, H. S. M., Products of shears in an affine Pappian plane, Rend. Matematica (1) Vol. 3, Serie VI (1970), 161166.Google Scholar
6. Dieudonné, J., Sur les générateurs des groupes classiques, Summa Bras. Mathem. 3 (1955), 149178.Google Scholar
7. Ellers, E. W., The length problem for the equiaffine group of a Pappian geometry, Rend. Matematica (2) Vol. 9, Serie VI (1976), 327336.Google Scholar
8. Ellers, E. W., Decomposition of equiaffinities into reflections, Geometriae Dedicat. 6 (1977), 297304.Google Scholar
9. Fisher, J. Ch., A classification of Pappian affinities, Ph.D. thesis, University of Toronto (1971).Google Scholar
10. Gôtzky, M., Products of reflections in an affine Moufang plane, Can. J. Math., Vol. XXII, no. 3 (1970), 666673.Google Scholar
11. O'Meara, O. T., Group-theoretic characterization of transvections using CDC, Math. Z. 110 (1969), 385394.Google Scholar
12. O'Meara, O. T., Lectures on linear groups, CBMS Regional Conference Series in Math., no. 22 (1974).Google Scholar
13. Scherk, P., On the decomposition of orthogonalities into symmetries, Proc. Am. Math. Soc. 1 (1950), 481491.Google Scholar
14. Veblen, O. and Young, J. W., Projective geometry (Vol. II. Blaisdell, New York, 1946).Google Scholar