Published online by Cambridge University Press: 20 November 2018
The decomposition of mappings into a minimal number of simple mappings is a common sight in geometry. One well-known instance is the representation of a plane motion by three reflections (see e.g. H. S M. Coxeter [3]) or the representation of equiaffinities by a minimal number of shears or reflections ([14], [5], [7], [8]). Theorems of this nature not only give valuable insight into the nature of the mapping, but they are also often used as a base for characterization theories (see e.g. F. Bachmann [2], M. Götzky [10]). A more abstract version of the same type of results is the famous Cartan-Dieudonné theorem. Its usefulness is indisputable. P. Scherk [13] gave a refined version of this theorem.