Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-26T12:52:36.059Z Has data issue: false hasContentIssue false

Extreme Forms

Published online by Cambridge University Press:  20 November 2018

H. S. M. Coxeter*
Affiliation:
University of Toronto
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The two ternary quadratic forms

are said to be reciprocal (to each other) since their coefficients form inverse matrices :

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1951

References

1. Bachmann, P., Zahlentheorie, vol. 4.2: Die Arithmetik der quadratischen Formen, (Leipzig, 1923).Google Scholar
la. Barlow, W., Probable nature of the internal symmetry of crystals, Nature, vol. 29 (1884), 186188.Google Scholar
2. Blichfeldt, H. F., The minimum values of quadratic forms, and the closest packing of spheres, Math. Ann., vol. 101 (1929), 605608.Google Scholar
3. Blichfeldt, H. F. The minimum values of positive quadratic forms in six, seven and eight variables, Math. Z., vol. 39 (1935), 115.Google Scholar
3a. Borel, A. and De Siebenthal, J., Les sous-groupes fermés de rang maximum des groupes de Lie clos, Comment. Math. Helv., vol. 23 (1949), 200221.Google Scholar
4. Brauer, R. and Coxeter, H. S. M., A generalization of theorems of Schönhardt and Mehmke on polytopes, Trans. Roy. Soc. Canada, Sect. III, vol. 34 (1940), 2934.Google Scholar
4a. Bravais, A., Mémoire sur les systèmes formés par des points distribués réguliérement sur un plan ou dans Vespace, J. École Polytech., cah. 33 (1850), 1128.Google Scholar
5. Buerger, M. J., X-Ray Crystallography (New York, 1942).Google Scholar
6. Burckhardt, J. J., Die Bewegungsgruppen der Kristallographie (Basel, 1947).Google Scholar
7. Burnside, W., Theory of Groups of Finite Order (Cambridge, 1911).Google Scholar
8. Cartan, E., Le principe de dualité et la théorie des groupes simples et semi-simples, Bull. Sci. Math. (2), vol. 49 (1925), 361374.Google Scholar
9. Cartan, E. La géométrie des groupes simples, Ann. Mat. Pura Appl. (4) ,vol. 4 (1927), 209256.Google Scholar
9a. Cartan, E. Sur la structure des groupes de transformations finis et continues, second edition (Paris, 1933).Google Scholar
10. Chaundy, T. W., The arithmetic minima of positive quadratic forms (I), Quart. J. Math., Oxford Ser., vol. 17 (1946), 166192.Google Scholar
11. Coxeter, H. S. M., The polytopes with regular-prismatic vertex figures (I), Philos. Trans. Roy. Soc. London, Ser. A, vol. 229 (1930), 329425.Google Scholar
12. Coxeter, H. S. M. The polytopes with regular-prismatic vertex figures (II), Proc. London Math. Soc. (2), vol. 34 (1931), 126189.Google Scholar
13. Coxeter, H. S. M. Discrete groups generated by reflections, Ann. of Math., vol. 35 (1934), 588621.Google Scholar
14. Coxeter, H. S. M. Finite groups generated by reflections, and their subgroups generated by reflections, Proc. Cambridge Philos. Soc, vol. 30 (1934), 466482.Google Scholar
15. Coxeter, H. S. M. Wythoff's construction for uniform polytopes, Proc. London Math. Soc. (2), vol.38 (1935), 327339.Google Scholar
16. Coxeter, H. S. M. The polytope 22i whose 27 vertices correspond to the lines on the general cubic surface, Amer. J. Math., vol. 62 (1940), 457486.Google Scholar
17. Coxeter, H. S. M. Regular Polytopes (London, 1948; New York, 1949).Google Scholar
18. Du Val, P., On the Kantor group of a set of points in a plane, Proc. London Math, Soc. (2), vol. 41 (1936), 1851.Google Scholar
19. Elte, E. L., The Semiregular Polytopes of the Hyper spaces (Groningen, 1912).Google Scholar
20. Ewald, P. P., Das “reziproke Gitter” in der Strukturtheorie,Z. Kristallogr., Mineral. Petrogr. Abt. A, vol. 56 (1921), 129156.Google Scholar
21. Frame, J. S., A symmetric representation of the twenty-seven lines on a cubic surface by lines in a finite geometry, Bull. Amer. Math. Soc, vol. 44 (1938), 658661.Google Scholar
22. Fricke, R. and Klien, F., Vorlesungen iiber die Théorie der automorphen Functionen, vol. 1 (Leipzig, 1897).Google Scholar
23. Gauss, C. F., Werke (Göttingen, 1876), vol. 1, 307; vol. 2, 192.Google Scholar
24. Gosset, T., On the regular and semi-regular figures in space of n dimensions, Messenger of Math., vol. 29 (1900), 4348.Google Scholar
25. Hadwiger, H., Über ausgezeichnete Vektorsterne und regulate Polytope, Comment. Math. Helv., vol. 13 (1940), 90107.Google Scholar
26. Hardy, G. H. and Wright, E. M., An Introduction to the Theory of Numbers (Oxford, 1945).Google Scholar
27. Hess, E., Weitere Beitrdge zur Théorie der raumlichen Configurationen, Verh. K. Leopoldinisch-Carolinischen Deutsch. Akad. Naturforsch., vol. 75 (1899), 1482.Google Scholar
27a. Hessenberg, G., Vektorielle Begrundung der Differentialgeometrie, Math. Ann., vol. 78 (1917), 187217.Google Scholar
28. Hofreiter, N., Über Extremformen, Monatsh. Math. Phys., vol. 40 (1933), 129152.Google Scholar
29. Hopf, H., Maximale Toroide und singuldre Elemente in geschlossenen Lieschen Gruppen, Comment. Math. Helv., vol. 15 (1943), 5970.Google Scholar
30. Korkine, A. and Zolotareff, G., Sur les formes quadratiques positives quaternaires, Math. Ann., vol. 5 (1872), 581583.Google Scholar
31. Korkine, A. and Zolotareff, G. Sur les formes quadratiques, Math. Ann., vol. 6 (1873), 366389.Google Scholar
32. Korkine, A. and Zolotareff, G. Sur les formes quadratiques positives, Math. Ann., vol. 11 (1877), 242292.Google Scholar
32a. Niggli, P., Krystallographische und Strukturtheoretische Grundbegriffe, Handbuch der Experimentalphysik, vol. 7.1 (1928), 317 pp.Google Scholar
33. O'Connor, R. E. and Pall, G., The construction of integral quadratic forms of determinant 1, Duke Math. J., vol. 11 (1944), 319331.Google Scholar
34. Ollerenshaw, K., The critical lattices of a sphere, J. London Math. Soc, vol. 23 (1948), 279299.Google Scholar
35. Ollerenshaw, K. The critical lattices of a four-dimensional hyper sphere, J. London Math. Soc, vol. 24 (1949), 190200.Google Scholar
36. Schläfli, L., Theorie der vielfachen Kontinuität, Gesammelte Mathematische Abhandlungen, vol. 1 (Basel, 1950).Google Scholar
37. Schoute, P. H., The sections of the net of measure polytopes Mn of space Spn with a space normal to a diagonal, Koninklijke Akademie van Wetenschappen te Amsterdam, proceedings of the Section of Sciences, vol 10 (1908), 688698.Google Scholar
38. Schoute, P. H. Analytical treatment of the polytopes regularly derived from the regular polytopes (IV), Verhandelingen der Koninklijke Akademie van Wetenschappen te Amsterdam (eerstesectie), vol. 11.5 (1913), 73108.Google Scholar
39. Segre, B., The Non-singular Cubic Surfaces (Oxford, 1942).Google Scholar
39a. Segre, B. and Mahler, K., On the densest packing of circles, Amer. Math. Monthly, vol.51 (1944), 261270.Google Scholar
40. Stiefel, E., Über eine Beziehung zwischen geschlossenen Lieܧschen Gruppen und diskontinuierlichen Bewegungsgruppen euklidischer Räume und ihre Anwendung auf die Aufzählung der einfachen Lie'schen Gruppen, Comment. Math. Helv., vol. 14 (1942), 350380.Google Scholar
41. Stiefel, E. Kristallographische Bestimmung der Charaktere der geschlossenen Lie'schen Gruppen, Comment. Math. Helv., vol. 17 (1945), 165200.Google Scholar
41a. Thue, A., Über die dichteste Zusammenstellung von kongruenten Kreisen in einer Ebene, Skriften udgivne af Videnskabs-selskabet i Christiania, Math.-Naturv. Klasse, 1910.1 (9 pp.).Google Scholar
42. Voronoï, G., Sur quelques propriétés des formes quadratiques positives parfaites, J. Reine Angew. Math., vol. 133 (1907), 97178.Google Scholar
43. Voronoï, G. Recherches sur les paralléloèdres primitifs, J. Reine Angew. Math., vol. 134 (1908),198287.Google Scholar
44. Weyl, H., Théorie der Darstellung kontinuierlicher halb-einfacher Gruppen durch linear e Transformationen (II), Math. Z., vol. 24 (1926), 328376.Google Scholar
45. Witt, E., Spiegelungsgruppen und Aufzählung halbeinfacher Liescher Ringe, Abh. Math. Sem. Hansischen Univ., vol. 14 (1941), 289322.Google Scholar