Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-24T02:31:35.049Z Has data issue: false hasContentIssue false

Extreme and Exposed Points in Orlicz Spaces

Published online by Cambridge University Press:  20 November 2018

R. Grzaślewicz
Affiliation:
Institute of Mathematics Technical University of Wroclaw Wybrzeze St. Wyspiańskiego27 50-370 Wroclaw Poland
H. Hudzik
Affiliation:
Institute of Mathematics A. Mickiewicz University Matejki48/49 60-769 Poznań Poland
W. Kurc
Affiliation:
Institute of Mathematics A. Mickiewicz University Matejki48/49 60-769 Poznań Poland
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Extreme points of the unit sphere in any Orlicz space over a measure space that contains no atoms of infinite measure are characterized. In the case of a finite-valued Orlicz function and a nonatomic measure space, exposed points of the unit sphere in these spaces are characterized too. Some corollaries and examples are also given.

Keywords

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1992

References

1. Ando, T., Linear Junctionals on Orlicz spaces, Nieuw. Arch. Wisk. 8 (1980), 116.Google Scholar
2. Greim, P., Strongly exposed points in Bochner LP-spaces, Proc. Amer. Math. Soc. 88 (1983), 8184.Google Scholar
3. Grzaślewicz, R., Finite dimensional Orlicz spaces, Bull. Acad. Polon. Sci. Math. (5-6 33 (1985), 277283.Google Scholar
4. Grzaslewicz, R. and Hudzik, H., Smooth points of Orlicz spaces equipped with Luxemburg norm, Math. Nachr. 155 (1992), 3145.Google Scholar
5. Hudzik, H., Strict convexity ofMusielak-Orlicz spaces with Luxemburg norm, Bull. Acad. Polon. Sci. Math. (5-6.29 (1981),235247.Google Scholar
6. Kamińska, A., Rotundity of Orlicz-Musielak sequence spaces, Bull. Acad. Polon. Sci. Math. (3-4.29 (1981), 137144.Google Scholar
7. Kozek, A., Orlicz spaces of functions with values in Banach spaces, Comment. Math. (2) 19 (1977), 299- 288.Google Scholar
8. Kozek, A., Convex integral junctionals on Orlicz spaces, Comment. Math. (1) 21 (1979), 109135.Google Scholar
9. Krasnoselski, M.A.ĭ and Ya. Rutickiï, B., Convexfunctions and Orlicz spaces, Groningen, 1961. translation.Google Scholar
10. Kurc, W., Strongly exposed points in Orlicz spaces of vector-valued functions, I, Comment. Math. (1) 27 (1987), 121134.Google Scholar
11. J, W.A.. Luxemburg, Banach junction spaces, Thesis, Delft, 1955.Google Scholar
12. Musielak, J., Orlicz spaces and modular spaces, Lecture Notes in Math. 1034, Berlin-Heidelberg-New York, Springer, 1983.Google Scholar
13. Nowak, M., Linear junctionals in Orlicz sequence spaces without local convexity, Internat. J. Math. & Math. Sci. (2) 15 (1992), 241254.Google Scholar
14. Orlicz, W., On integral representability of linear junctionals over the space of ϕ-integrable functions, Bull. Acad. Polon. Sci. Math. 8 (1960), 567569.Google Scholar
15. Sundaresan, K., On the strict convexity of certain Banach spaces, Pacific J. Math. 15 (1965), 10831086.Google Scholar
16. Turett, B., Rotundity of Orlicz spaces, Proc. Kon. Ned. Akad. Wet. 79 (1976), 462469.Google Scholar
17. Wu, C. and Chen, S., Extreme points and rotundity of Musielak-Orlicz spaces, preprint in Chinese.Google Scholar
18. Wu, C. and Chen, S., Extreme points and rotundity of Orlicz-Musielak spaces, J. Math. Res and Exposition 2 (1988), 195200.Google Scholar