Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-05T13:35:18.704Z Has data issue: false hasContentIssue false

Extremal Sequences for the Bellman Function of the Dyadic Maximal Operator and Applications to the Hardy Operator

Published online by Cambridge University Press:  20 November 2018

Eleftherios Nikolaos Nikolidakis*
Affiliation:
Department of Mathematics, University of Ioannina, Ioannina, Greece e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We prove that the extremal sequences for the Bellman function of the dyadic maximal operator behave approximately as eigenfunctions of this operator for a specific eigenvalue. We use this result to prove the analogous one with respect to the Hardy operator.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2016

References

[1] Cox, D. C., Some sharp martingale inequalities related to Doob's inequality. In: Inequalities in statistics and probability (Lincoln, Neb., 1982), IMS Lecture Notes Monogr. Ser., 5, Inst. Math. Statist., Hayward, CA, 1984, pp. 7883.Google Scholar
[2] Melas, A. D., The Bellman functions of dyadic-like maximal opertors and related inequalities. Adv. in Math. 192(2005), no. 2, 310340. http://dx.doi.Org/10.101 6/j.aim.2004.04.013 Google Scholar
[3] Melas, A. D., Sharp general local estimates for dyadic-like maximal operators and related Bellman functions. Adv. Math. 220(2009), no. 2, 367426.http://dx.doi.Org/10.1016/j.aim.2008.09.010 Google Scholar
[4] Nazarov, F. and Treil, S., The hunt for a Bellman function: applications to estimates for singular integral operators and to other classical problems of harmonic analysis. Algebra i Analiz 8(1996), no. 5, 32-162; translation in St. Petersburg Math. J. 8(1997), no. 5, 721824.Google Scholar
[5] Nazarov, F., Treil, S., and Volberg, A., The Bellman functions and two-weight inequalities for Haar multipliers. J. Amer. Math. Soc. 12(1999), no. 4, 909928 http://dx.doi.org/10.1090/S0894-0347-99-00310-0 Google Scholar
[6] Nikolidakis, E. N., Extremal sequences for the Bellman function of the dyadic maximal operator. arxiv:1301.2898 Google Scholar
[7] Nikolidakis, E. N., Properties of extremal sequences for the Bellman function of the dyadic maximal operator. Coll. Math. 133(2013), no. 2, 273282. http://dx.doi.org/10.4064/cm133-2-13 Google Scholar
[8] Nikolidakis, E. N., The geometry of the dyadic maximal operator. Rev. Mat. Iberoam 30(2014), no. 4, 1397–141.http://dx.doi.org/10.4171/RMI/819 Google Scholar
[9] Nikolidakis, E. N. and Melas, A. D., A sharp integral rearrangement inequality for the dyadic maximal operator and applications. Appl. Comput. Harmon. Anal. 38(2015), no. 2, 242261. http://dx.doi.Org/10.1016/j.acha.2O14.03.008 Google Scholar
[10] Slavin, L., Stokolos, A., and Vasyunin, V., Monge-Ampére equations and Bellman functions: The dyadic maximal operator. C. R. Math. Acad. Sci. Paris 346(2008), no. 9-10, 585588.http://dx.doi.Org/10.1016/j.crma.2008.03.003 Google Scholar
[11] Slavin, L.and Volberg, A., The explicit BFfor a dyadic Chang-Wilson-Wolff theorem. In: The s-function and the exponential integral, Contemp. Math., 444, American Mathematical Society, Providence, RI, 2007.Google Scholar
[12] Vasyunin, V. I., The sharp constant in the reverse Holder inequality for Muckenhoupt weight. Algebra i Analiz 15(2003), no. 1, 73-117; translation in St. Petersburg Math. J. 15(2004), no. 1 4979. http://dx.doi.Org/10.1090/S1061-0022-03-00802-1 Google Scholar
[13] Vasyunin, V. and Volberg, A., The Bellman functions for the simplest two-weight inequality.an investigation of a particular case. (Russian) St. Petersburg Math. J. 18(2007), no. 2, 201222.http://dx.doi.Org/10.1090/S1061-0022-07-00953-3 Google Scholar
[14] Vasyunin, V., Monge-Ampére equation and Bellman optimization of Carleson embedding theorems. In: Linear and complex analysis Amer. Math. Soc. Transi. Ser. 2, 226, American Mathematical Society, Providence, RI, 2009, pp. 195238.Google Scholar
[15] Wang, G., Sharp maximal inequalities for conditionally symmetric martingales and Brownian motion. Proc. Amer. Math. Soc. 112(1991), no. 2, 579586.http://dx.doi.org/10.1090/S0002-9939-1991-1059638-8 Google Scholar