No CrossRef data available.
Article contents
Extensive Subcategories in Universal Topological Algebras
Published online by Cambridge University Press: 20 November 2018
Abstract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Herrlich [7] has introduced the limit-operators to obtain every coreflective subcategory of the category Top of topological spaces and continuous maps. Using limit-operators, S. S. Hong [9] has constructed new reflective subcategories from a known extensive subcategory of a hereditary category of Hausdorff spaces and continuous maps.
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 1977
References
1.
Banaschewski, B., Extensions of topological spaces,
Can. Math. Bull. 7 (1964), 1–22.Google Scholar
2.
Banaschewski, B.
An introduction to universal algebra, I.I.T. Kanpur—McMaster Univ.,
Hamilton (1974/1973).Google Scholar
4.
Eastman, D. E., Universal topological and uniform algebras, Ph.D. thesis, McMaster University (1970).Google Scholar
6.
Herrlich, H., Topologische Reflexionen und Coreflexionen
Lecture Notes in Math. 78 (Springer, New York, 1962).Google Scholar
7.
Herrlich, H.
Limit-operator s and topological coreflections, Trans. Amer. Math. Soc. 1J+6 (1969), 203–210.CrossRefGoogle Scholar
8.
Herrlich, H. and Strecker, G. E., Category theory (Allyn and Bacon Inc., Boston, 1973).Google Scholar
9.
Hong, S. S., Limit-operators and reflective subcategories,
Lecture Notes in Math. 378 (Springer, New York, 1974), 219–227.Google Scholar
10.
Hong, S. S.
On k-compactlike spaces and reflective subcategories,
Gen. Topology Appl. 3 (1973), 319–330.Google Scholar
11.
Husek, M., The class of’ k-compact spaces is simple,
Math. Z. 110 (1969), 123–126.Google Scholar
You have
Access