Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-26T00:53:42.420Z Has data issue: false hasContentIssue false

Extensive Subcategories in Universal Topological Algebras

Published online by Cambridge University Press:  20 November 2018

T. H. Choe
Affiliation:
McMaster University, Hamilton, Ontario
Y. H. Hong
Affiliation:
Sookmyung University, Seoul, Korea
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Herrlich [7] has introduced the limit-operators to obtain every coreflective subcategory of the category Top of topological spaces and continuous maps. Using limit-operators, S. S. Hong [9] has constructed new reflective subcategories from a known extensive subcategory of a hereditary category of Hausdorff spaces and continuous maps.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1977

References

1. Banaschewski, B., Extensions of topological spaces, Can. Math. Bull. 7 (1964), 122.Google Scholar
2. Banaschewski, B. An introduction to universal algebra, I.I.T. Kanpur—McMaster Univ., Hamilton (1974/1973).Google Scholar
3. Bourbaki, N., Topologie générale (Herman, Paris, 1960).Google Scholar
4. Eastman, D. E., Universal topological and uniform algebras, Ph.D. thesis, McMaster University (1970).Google Scholar
5. Gràtzer, G., Universal algebra (D. Van Nostrand Co., Princeton, 1968).Google Scholar
6. Herrlich, H., Topologische Reflexionen und Coreflexionen Lecture Notes in Math. 78 (Springer, New York, 1962).Google Scholar
7. Herrlich, H. Limit-operator s and topological coreflections, Trans. Amer. Math. Soc. 1J+6 (1969), 203210.CrossRefGoogle Scholar
8. Herrlich, H. and Strecker, G. E., Category theory (Allyn and Bacon Inc., Boston, 1973).Google Scholar
9. Hong, S. S., Limit-operators and reflective subcategories, Lecture Notes in Math. 378 (Springer, New York, 1974), 219227.Google Scholar
10. Hong, S. S. On k-compactlike spaces and reflective subcategories, Gen. Topology Appl. 3 (1973), 319330.Google Scholar
11. Husek, M., The class of’ k-compact spaces is simple, Math. Z. 110 (1969), 123126.Google Scholar