No CrossRef data available.
Article contents
Extensions of One Primitive Inverse Semigroup by Another
Published online by Cambridge University Press: 20 November 2018
Extract
Every inverse semigroup containing a primitive idempotent is an ideal extension of a primitive inverse semigroup by another inverse semigroup. Consequently, in developing the theory of inverse semigroups, it is natural to study ideal extensions of primitive inverse semigroups (cf. [3; 7]). Since the structure of any primitive inverse semigroup is known, an obvious type of ideal extension to consider is that of one primitive inverse semigroup by another. In this paper, we will construct all such extensions and give an abstract characterization of the resulting semigroup.
The problem of extending one primitive inverse semigroup by another can be essentially reduced to that of extending one Brandt semigroup by another Brandt semigroup. The latter problem has been solved by Lallement and Petrich in [3] in case the first Brandt semigroup has only a finite number of idempotents.
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 1972