Published online by Cambridge University Press: 07 August 2020
Given an action ${\varphi }$ of inverse semigroup S on a ring A (with domain of ${\varphi }(s)$ denoted by $D_{s^*}$ ), we show that if the ideals $D_e$ , with e an idempotent, are unital, then the skew inverse semigroup ring $A\rtimes S$ can be realized as the convolution algebra of an ample groupoid with coefficients in a sheaf of (unital) rings. Conversely, we show that the convolution algebra of an ample groupoid with coefficients in a sheaf of rings is isomorphic to a skew inverse semigroup ring of this sort. We recover known results in the literature for Steinberg algebras over a field as special cases.
B. S. thanks the Fulbright commission for its support in visiting the Federal University of Santa Catarina in Brazil and the PSC-CUNY. D. G. was partially supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) grant numbers 304487/2017-1 and 406122/2018-0 and Capes-PrInt grant number 88881.310538/2018-01—Brazil.