No CrossRef data available.
Article contents
The Erdős–Moser Sum-free Set Problem
Part of:
Additive number theory; partitions
Published online by Cambridge University Press: 23 September 2019
Abstract
We show that there is an absolute $c>0$ such that if $A$ is a finite set of integers, then there is a set $S\subset A$ of size at least $\log ^{1+c}|A|$ such that the restricted sumset $\{s+s^{\prime }:s,s^{\prime }\in S\text{ and }s\neq s^{\prime }\}$ is disjoint from $A$. (The logarithm here is to base $3$.)
MSC classification
- Type
- Article
- Information
- Copyright
- © Canadian Mathematical Society 2019
References
Behrend, F. A., On sets of integers which contain no three terms in arithmetical progression. Proc. Nat. Acad. Sci. USA 32(1946), 331–332. https://doi.org/10.1073/pnas.32.12.331CrossRefGoogle ScholarPubMed
Bloom, T. F., A quantitative improvement for Roth’s theorem on arithmetic progressions. J. Lond. Math. Soc. (2) 93(2016), 643–663. https://doi.org/10.1112/jlms/jdw010CrossRefGoogle Scholar
Bourgain, J., On triples in arithmetic progression. Geom. Funct. Anal. 9(1999), 968–984. https://doi.org/10.1007/s000390050105CrossRefGoogle Scholar
Baltz, A., Schoen, T., and Srivastav, A., Probabilistic construction of small strongly sum-free sets via large Sidon sets. In: Randomization, approximation, and combinatorial optimization. Algorithms and techniques, Berlin, Heidelberg, 1999. Springer, Berlin Heidelberg, 1999, pp. 138–143. https://doi.org/10.1007/978-3-540-48413-4_15.Google Scholar
Baltz, A., Schoen, T., and Srivastav, A., Probabilistic construction of small strongly sum-free sets via large Sidon sets. Colloq. Math. 86(2000), 171–176. https://doi.org/10.4064/cm-86-2-171-176Google Scholar
Bukh, B., Sums of dilates. Combin. Probab. Comput. 17(2008), 627–639. https://doi.org/10.1017/S096354830800919XCrossRefGoogle Scholar
Choi, S. L. G., On a combinatorial problem in number theory. Proc. London Math. Soc. (3) 23(1971), 629–642. https://doi.org/10.1112/plms/s3-23.4.629CrossRefGoogle Scholar
Croot, E. S., Lev, V. F., and Pach, P. P., Progression-free sets in ℤ4n are exponentially small. Ann. of Math. (2) 185(2017), 331–337. https://doi.org/10.4007/annals.2017.185.1.7CrossRefGoogle Scholar
Croot, E. S. and Sisask, O., A probabilistic technique for finding almost-periods of convolutions. Geom. Funct. Anal. 20(2010), 1367–1396. https://doi.org/10.1007/s00039-010-0101-8CrossRefGoogle Scholar
Dousse, J., On a generalisation of Roth’s theorem for arithmetic progressions and applications to sum-free subsets. Math. Proc. Cambridge Philos. Soc. 155(2013), 331–341. https://doi.org/10.1017/S0305004113000327CrossRefGoogle Scholar
Elkin, M., An improved construction of progression-free sets. In: Symposium on Discrete Algorithms. 2010, pp. 886–905. https://doi.org/10.1007/s11856-011-0061-1.Google Scholar
Erdős, P., Extremal problems in number theory. In: Proc. Sympos. Pure Math., Vol. VIII. Amer. Math. Soc., Providence, RI, 1965, pp. 181–189. https://pdfs.semanticscholar.org/6754/29cbb9a130028ce8af5380a0330bb9733d9b.pdf.Google Scholar
Green, B. J., Arithmetic progressions in sumsets. Geom. Funct. Anal. 2(2002), 584–597. https://doi.org/10.1007/s00039-002-8258-4CrossRefGoogle Scholar
Green, B. J., Counting sets with small sumset, and the clique number of random Cayley graphs. Combinatorica 25(2005), 307–326. https://doi.org/10.1007/s00493-005-0018-2CrossRefGoogle Scholar
Green, B. J., Finite field models in additive combinatorics. In: Surveys in combinatorics 2005. London Math. Soc. Lecture Note Ser., 327, Cambridge University Press, Cambridge, 2005, pp. 1–27. https://doi.org/10.1017/CBO9780511734885.002.Google Scholar
Green, B. J., A Szemerédi-type regularity lemma in abelian groups, with applications. Geom. Funct. Anal. 15(2005), 340–376. https://doi.org/10.1007/s00039-005-0509-8CrossRefGoogle Scholar
Green, B. J. and Konyagin, S. V., On the Littlewood problem modulo a prime. Canad. J. Math. 61(2009), 141–164. https://doi.org/10.4153/CJM-2009-007-4CrossRefGoogle Scholar
Green, B. J. and Sanders, T., A quantitative version of the idempotent theorem in harmonic analysis. Ann. of Math. (2) 168(2008), 1025–1054. https://doi.org/10.4007/annals.2008.168.1025CrossRefGoogle Scholar
Green, B. J. and Tao, T. C., An inverse theorem for the Gowers U 3(G) norm. Proc. Edinb. Math. Soc. (2) 51(2008), 73–153. https://doi.org/10.1017/S0013091505000325CrossRefGoogle Scholar
Green, B. J. and Tao, T. C., Linear equations in primes. Ann. of Math. (2) 171(2010), 1753–1850. https://doi.org/10.4007/annals.2010.171.1753CrossRefGoogle Scholar
Green, B. J. and Wolf, J., A note on Elkin’s improvement of Behrend’s construction. In: Additive number theory: Festschrift in honor of the sixtieth birthday of Melvyn B. Nathanson, First ed., Springer-Verlag, 2010, pp. 141–144. https://doi.org/10.1007/978-0-387-68361-4_9.CrossRefGoogle Scholar
Rudin, W., Fourier analysis on groups. Wiley Classics Library. John Wiley & Sons Inc., New York, 1990. https://doi.org/10.1002/9781118165621CrossRefGoogle Scholar
Ruzsa, I. Z., Sum-avoiding subsets. Ramanujan J. 9(2005), 77–82. https://doi.org/10.1007/s11139-005-0826-4CrossRefGoogle Scholar
Schoen, T., Near optimal bounds in Freiman’s theorem. Duke Math. J. 158(2011), 1–12. https://doi.org/10.1215/00127094-1276283CrossRefGoogle Scholar
Shao, X., Finding linear patterns of complexity one. Int. Math. Res. Not. 2015 2311–2327. https://doi.org/10.1093/imrn/rnu004Google Scholar
Shkredov, I. D., On a problem of Gowers. Izv. Ross. Akad. Nauk Ser. Mat. 70(2006), 179–221. https://doi.org/10.1070/IM2006v070n02ABEH002316Google Scholar
Shkredov, I. D., On sets of large trigonometric sums. Izv. Ross. Akad. Nauk Ser. Mat. 72(2008), 161–182. https://doi.org/10.1070/IM2008v072n01ABEH002396Google Scholar
Sudakov, B., Szemerédi, E., and Vu, V. H., On a question of Erdős and Moser. Duke Math. J. 129(2005), 129–155. https://doi.org/10.1215/S0012-7094-04-12915-XCrossRefGoogle Scholar
Tao, T. C. and Vu, V. H., Additive combinatorics. Cambridge Studies in Advanced Mathematics, 105, Cambridge University Press, Cambridge, 2006. https://doi.org/10.1017/CBO9780511755149CrossRefGoogle Scholar
Tao, T. C. and Vu, V. H., Sum-avoiding sets in groups. Discrete Anal. 31(2016), Paper No. 15. https://doi.org/10.19086/da.887.Google Scholar
Tao, T. C. and Vu, V. H., Sum-free sets in groups: a survey. J. Comb. 8(2017), 541–552. https://doi.org/10.4310/JOC.2017.v8.n3.a7Google Scholar
Wolf, J., Finite field models in arithmetic combinatorics—ten years on. Finite Fields Appl. 32(2015), 233–274. https://doi.org/10.1016/j.ffa.2014.11.003CrossRefGoogle Scholar