Article contents
Equidistant Loci and the Minkowskian Geometries
Published online by Cambridge University Press: 20 November 2018
Extract
The spaced of this paper is a metrization, with a not necessarily symmetric distance xy, of an open convex set D in the n-dimensional affine space An such that xy + yz = xz if and only if x, y, z lie on an affine line with y between x and z and such that all the balls px ≦ p are compact. These spaces are called straight desarguesian G-spaces or sometimes open projective metric spaces. The hyperbolic geometry is an example; a large variety of other examples is studied by contributors to Hilbert's problem IV. When D = An and all the affine translations are isometries for the metric xy, the space is called a Minkowskian space or sometimes a finite dimensional Banach space, the (not necessarily symmetric) distance of a Minkowskian space being a (positive homogeneous) norm. In this paper geometric conditions in terms of equidistant loci are given for the space R to be a Minkowskian space.
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 1972
References
- 5
- Cited by