Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-27T06:50:58.304Z Has data issue: false hasContentIssue false

Direct Sums of Partial Algebras and Final Algebraic Structures

Published online by Cambridge University Press:  20 November 2018

Jürgen Schmidt*
Affiliation:
Mathematisches Institut, Universität Bonn
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Słomiński (9), as well as the author (8), gave a descriptive, i.e., noncategory-theoretic, definition of the direct sum of partial algebras, i.e., the co-product in the category of partial algebras (A,ƒ), where ƒ = (ƒi)i∈I, ƒi: dom ƒiA, dom ƒiAKi, of fixed type A = (Ki)i∈I.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1968

References

1. Bourbaki, N., Théorie des ensembles, Chapitre 4 (Hermann, Paris, 1957).Google Scholar
2. Burmeister, P. and Schmidt, J., On the completion of partial algebras, Colloq. Math. 17 (1967), 235245.Google Scholar
3. Felscher, W., Adjungierte Funktoren und primitive Klassen, Sitz. Ber. Heidelberger Akad. Wiss. Math.-Natur. Kl. 1965, 445509.Google Scholar
4. Freyd, P., Abelian categories. An introduction to the theory of functions (Harper and Row, New York-London, 1964).Google Scholar
5. Kerkhoff, R., Eine Konstruktion absolut freier Algebren, Math. Ann. 158 (1965), 109112.Google Scholar
6. Mitchell, B., Theory of categories (Academic Press, New York-London, 1965).Google Scholar
7. Schmidt, J., Die Charakteristik einer allgemeinen Algebra. I, II, Arch. Math. 18 (1962), 457-470; 15 (1964), 286301.Google Scholar
8. Schmidt, J., A general existence theorem on partial algebras and its special cases, Colloq. Math. 14 (1966), 7387.Google Scholar
9. Słomiński, J., A theory of extensions of quasi-algebras to algebras, Rozprawy Mat. 40 (1964), 63 pp.Google Scholar