Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T02:23:36.704Z Has data issue: false hasContentIssue false

Defining Relations in Orthogonal Groups of Characteristic Two

Published online by Cambridge University Press:  20 November 2018

Georg Güunther
Affiliation:
Memorial University, Corner Brook, Newfoundland
Wolfgang Nolte
Affiliation:
Technische Hochschide, Darmstadt, W. Germany
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Introduction. It is well-known that a group is uniquely determined by a system of generators, and a set of defining relations on those generators. Clearly it is of interest to find relations that are as simple as possible. In this paper, this question is dealt with for certain orthogonal groups of characteristic 2, which are generated by involutions.

Let V be a vector space over a field K of characteristic 2 (we always exclude the prime field K = G F (2)). Let Q be a quadratic form over V, and let S be the set of orthogonal transformations of (V, Q) whose path is 1-dimensional and not contained in the radical of V. Letting O* be the group generated by S, we shall show that every relation among generators in S is a consequence of relations of length 2, 3, or 4.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1979

References

1. Ahrens, J., Dress, A. and Wolff, H., Relationen zwischenSymmetrien in orthogonalen Gruppen, J. reine angew. Math. 234 (1969), 111.Google Scholar
2. Artin, E., Geometric algebra, 3 Aufl., (New York, 1964).Google Scholar
3. Bachmann, F., Aufbau der Géométrie aus dem Spiegelungsbegrijf (Berlin-Gôttingen-Heidelberg, 2. Aufl., 1973).Google Scholar
4. Becken, S., Spiegelungsrelationen in orthogonalen Gruppen, J. reine angew. Math. 210 (1962), 205215.Google Scholar
5. Dieudonné, J., La géométrie des groupes classiques, 3 (Aufl., Berlin-Gôttingen-Heidelberg, 1971).Google Scholar
6. Dieudonné, J., Sur les générateurs des groupes classiques, Summa Bras. Math. 3 (1955), 149178.Google Scholar
7. Ellers, E. W., Generators of the unitary group of characteristic 2, J. reine angew. Math. 276 (1975), 9598.Google Scholar
8. Ellers, E. W., The length of a unitary transformation, J. reine angew. Math. 281 (1976), 15.Google Scholar
9. Ellers, E. W., The length of a unitary transformation for characteristic 2, J. reine angew. Math. 281 (1976), 612.Google Scholar
10. Ellers, E. W., Decomposition of orthogonal, symplectic, and unitary isometries into simple isometries, Abh. Math. Sem. Univ. Hamburg. 46 (1978), 97127.Google Scholar
11. Ellers, E. W., Relations in classical groups, J. Alg. 51 (1978), 1924.Google Scholar
12. Gôtzky, M., Unverkùrzbare Produkte und Relationen in unitdren Gruppen, Math. Zeitschr. 104 (1968), 115.Google Scholar
13. Gôtzky, M., Erzeugende der engeren unitdren Gruppen, Arch. Math. 19 (1968), 383389.Google Scholar
14. Giinther, G., Singular isometries in orthogonal groups, Can. Math. Bull. Vol. 20 (1977), 189198.Google Scholar
15. Lingenberg, R., Metrische Géométrie der Ebene und S-Gruppen, Jahresber. d. DMV, Bd. 69 (1969), 950.Google Scholar
16. Lingenberg, R., Die orthogonalen Gruppen Os(K, Q) iiber Korpern der Charakteristik 2, Math. Nachr. 20 (1960), 372380.Google Scholar
17. Meyer, K., Transvektionsrelationen in metrischen Vektorrdumen der Charakteristik zwei, j . reine angew. Math. 233 (1968), 189199.Google Scholar
18. Nolte, W., Spiegelungsrelationen in den engeren orthogonalen Gruppen, J. reine angew. Math. 273 (1975), 150152.Google Scholar
19. Nolte, W., Das Relationenproblem fur eine Klasse von Untergruppen orthogonaler Gruppen, J. reine angew. Math. 292 (1977), 211220.Google Scholar
20. Nolte, W., Affine Rdume als Gruppenràume orthogonaler Gruppen, Geometriae Dedicata. 7 (1978), 2135.Google Scholar
21. Nolte, W., Relationen zwischen einfachen Isometrien in orthogonalen Gruppen, Appeared in “Beitrage zur Geometrischen Algebra”, Birkhâuser Verlag Basel (1977), 275278.Google Scholar
22. Scherk, P., On the decomposition of orthogonalities into symmetries, Proc. Amer. Soc. 1 (1950), 481491.Google Scholar
23. Spengler, U., Relationen zwischen symplektischen Transvektionen, J. reine angew. Math. 274/275 (1975), 141149.Google Scholar