No CrossRef data available.
Published online by Cambridge University Press: 20 November 2018
We give a two dimensional extension of the three distance theorem. Let $\theta $ be in ${{\mathbf{R}}^{2}}$ and let $q$ be in $\mathbf{N}$. There exists a triangulation of ${{\mathbf{R}}^{2}}$ invariant by ${{\mathbf{Z}}^{2}}$-translations, whose set of vertices is ${{\mathbf{Z}}^{2}}\,+\,\{0,\,\theta ,\,\ldots ,\,q\theta \}$, and whose number of different triangles, up to translations, is bounded above by a constant which does not depend on $\theta $ and $q$.