Published online by Cambridge University Press: 20 November 2018
It is known [1] that for compact Hausdorff X, C(X) is the dual of a Banach space if and only if X is hyperstonian, that is the closure of an open set in X is again open and the carriers of normal measures in C(X)* have dense union in X. With the desiratum of proving that C(X) is always the dual of some sort of space we broaden the concept of Banach space as follows. A Banach space may be comfortably regarded as a pair (E, B) where E is a topological linear space and B is a subset of E ; the requisite property is that the Minkowski functional of B be a complete norm whose topology coincides with that of E.