Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-20T15:25:34.974Z Has data issue: false hasContentIssue false

Convex Polyhedra with Regular Faces

Published online by Cambridge University Press:  20 November 2018

Norman W. Johnson*
Affiliation:
Michigan State University
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

An interesting set of geometric figures is composed of the convex polyhedra in Euclidean 3-space whose faces are regular polygons (not necessarily all of the same kind). A polyhedron with regular faces is uniform if it has symmetry operations taking a given vertex into each of the other vertices in turn (5, p. 402). If in addition all the faces are alike, the polyhedron is regular.

That there are just five convex regular polyhedra—the so-called Platonic solids—was proved by Euclid in the thirteenth book of the Elements (10, pp. 467-509). Archimedes is supposed to have described thirteen other uniform, “semi-regular” polyhedra, but his work on the subject has been lost.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1966

References

1. Aškinuze, V. G., O čisle polupravil'nyh mnogogrannikov, Mat. Prosvesc, 1 (1957), 107118.Google Scholar
2. Ball, W. W. R., Mathematical recreations and essays, 11th ed., revised by H. S. M. Coxeter (London, 1939).Google Scholar
3. Coxeter, H. S. M., Regular and semi-regular polytopes, Math. Z., 46 (1940), 380407.Google Scholar
4. Coxeter, H. S. M., Regular polytopes, 2nd ed. (New York, 1963).Google Scholar
5. Coxeter, H. S. M., Longuet-Higgins, M. S., and Miller, J. C. P., Uniform polyhedra, Philos. Trans. Roy. Soc. London, Ser. A, 246 (1954), 401450.Google Scholar
6. Coxeter, H. S. M. and Moser, W. O. J., Generators and relations for discrete groups (Ergebnisse der Mathematik und ihrer Grenzgebiete, 14), 2nd ed. (Berlin, 1963).Google Scholar
7. Cundy, H. M. and Rollett, A. P., Mathematical models, 2nd printing (London, 1954).Google Scholar
8. Freudenthal, H. and van der Waerden, B. L., Over een bewering van Euclides, Simon Stevin, 25 (1947), 115121.Google Scholar
9. Grünbaum, B. and Johnson, N. W., The faces of a regular-faced polyhedron, J. London Math. Soc, 40 (1965), 577586.Google Scholar
10. Heath, T. L., The thirteen books of Euclid's elements, vol. 3 (London, 1908; New York, 1956).Google Scholar
11. Johnson, N. W., Convex polyhedra with regular faces (preliminary report), Abstract 576-157, Notices Amer. Math. Soc., 7 (1960), 952.Google Scholar
12. Kepler, J., Harmonice Mundi, Opera Omnia, vol. 5 (Frankfurt, 1864), 75334.Google Scholar
13. Zalgaller, V. A., Pravil'nogrannye mnogogranniki, Vestnik Leningrad. Univ. Ser. Mat. Meh. Astron., 18 (1963), No. 7, 58.Google Scholar
14. Zalgaller, V. A. and others, O pravil'nogrannyh mnogogrannikah, Vestnik Leningrad. Univ. Ser. Mat. Meh. Astron., 20 (1965), No. 1, 150152.Google Scholar