Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-26T00:24:31.075Z Has data issue: false hasContentIssue false

A Contribution to the Theory of Metrization

Published online by Cambridge University Press:  20 November 2018

H. H. Hung*
Affiliation:
University of Science of Malaysia, Penang, Malaysia; McGill University, Montreal, Quebec
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In a paper on the same subject [28] and another coming out at the same time [27], Nagata gave his celebrated Double (treble, really) Sequence Theorem, with which he deduced easily and thus brought together the basic metrization theorems, i.e. theorems in which the conditions for metrizability are given as the availability of bases or subbases of certain descriptions.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1977

References

1. Alexandroff, P. S. and Urysohn, P., Une condition nécessaire et suffisante pour qu'une class soit une class (@), C. R. Acad. Sci., Paris, 177 (1923), 12741277.Google Scholar
2. Arhangel'skii, A. V., New criteria for paracompactness and metrizability of an arbitrary T\ space, Dokl. Akad. Nauk SSSR lp (1961), 13-15; Soviet Math. Dokl. 2 (1961), 13671369.Google Scholar
3. Arhangel'skii, A. V. Bicompact sets and the topology of spaces, Dokl. Akad. Nauk SSSR 150 (1963), 9-12 ; Soviet Math. Dokl. 4 (1963), 561564.Google Scholar
4. Arhangel'skii, A. V. Bicompact sets and the topology of spaces, Trudy, Moskov. Mat. Obsc. 13 (1965), 3-55; Trans. Moscow Math. Soc. 13 (1965), 162.Google Scholar
5. Arhangel'skii, A. V. Mappings and spaces, Uspehi Mat. Nauk 21 (1966), 133184; Russian Math. Surveys 01 (1966), no.4,115-162.Google Scholar
6. Bing, R. H., Metrization of topological spaces, Can. J. Math. 3 (1951), 175186.Google Scholar
7. Céder, J. G., Some generalizations of metric spaces, Pac. J. Math. 11 (1961), 105126.Google Scholar
8. Comfort, W. W. and Negrepontis, S., The theory of ultrafilters, Die Grundlehren der math. Wissenschaften Band 211 (Springer-Verlag, Berlin and New York, 1974).Google Scholar
9. Frink, A. H., Distance junctions and the metrization problem, Bull. Amer. Math. Soc. 10 (1937), 133142.Google Scholar
10. Harley, P. W. III and Faulkner, G. D., Metrization of symmetric spaces, Can. J. Math. 27 (1975) 986990.Google Scholar
11. Heath, R. W., On open mappings and certain spaces satisfying the first countability axiom, Fundamenta Mathematicae 57 (1965), 9196.Google Scholar
12. Hodel, R. E., Metrizability of topological spaces, Pac. J. Math. 55 (1974), no. 2, 441459.Google Scholar
13. Hung, H. H., Some metrization theorems, Proc. Amer. Math. Soc. 54 (1976), 363367.Google Scholar
14. Hung, H. H. Improvements on some earlier metrization theorems, (unpublished) 1975.Google Scholar
15. Hung, H. H. One more metrization theorem, Proc. Amer. Math. Soc. 57 (1976), 351353.Google Scholar
16. Jones, F. B., R. L. Moore's axiom 1’ and metrization, Proc. Amer. Math. Soc. 9 (1958), 487.Google Scholar
17. Jones, F. B. Metrization, Amer. Math. Monthly 73 (1966), 571576.Google Scholar
18. Martin, H. W., Metrization of symmetric spaces and regular maps, Proc. Amer. Math. Soc. 35 (1972), 269274.Google Scholar
19. Martin, H. W. A note on the Frink metrization theorem, Rocky Mountain Jour. Math. 6 (1976), 155157.Google Scholar
20. Martin, H. W. Weak bases and metrization, Trans. Amer. Math. Soc. 222 (1976), 337344.Google Scholar
21. Michael, E., A note on paracompact spaces, Proc. Amer. Math. Soc. 4 (1953), 831838.Google Scholar
22. Michael, E. Another note on paracompact spaces, Proc. Amer. Math. Soc. 8 (1957), 822828.Google Scholar
23. Michael, E. Yet another note on paracompact spaces, Proc. Amer. Math. Soc. 10 (1959), 309314.Google Scholar
24. Michael, E. \ta-spaces, J. Math. Mech. 15 (1966), 9851002.Google Scholar
25. Morita, K., A condition for the metrizability of topological spaces and for n-dimensionality, Sci. Rep. Tokyo Kyoiki Daigaku, Ser. A, 5 (1955), 3336.Google Scholar
26. Nagata, J., On a necessary and sufficient condition for metrizability, J. Inst. Polytech. Osaka City Univ. Ser. A Math. 1 (1950), 93100.Google Scholar
27. Nagata, J. A theorem for metrizability of a topological space, Proc. Japan Acad. 33 (1957), 128- 130.Google Scholar
28. Nagata, J. A contribution to the theory of metrization, J. Inst. Polytech., Osaka City Univ. 8 (1957), 185192.Google Scholar
29. Nagata, J. Modern general topology (North-Holland, Amsterdam, second edition, 1974).Google Scholar
30. Nagami, K., Note on metrizability and n-dimensionality, Proc. Japan Acad. 36 (1960), 565570.Google Scholar
31. Nagami, K. a-spaces and product spaces, Math. Ann. 181 (1969), 109118.Google Scholar
32. Niemytzki, V., On the third axiom of metric spaces, Trans. Amer. Math. Soc. 29 (1927), 507513.Google Scholar
33. O'Meara, P. A., A metrization theorem, Math. Nach. 45 (1970), 6972.Google Scholar
34. Smirnov, Ju. M., A necessary and sufficient condition for metrizability of a topological space, Dokl. Akad. SSSR (N.S.) 77 (1951), 197200. (Russian).Google Scholar
35. Stone, A. H., Paracompactness and product spaces, Bull. Amer. Math. Soc. 54 (1948). 977982.Google Scholar
36. Stone, A. H. Sequences of coverings, Pacific J. Math. 10 (1960), 689691.Google Scholar
37. Wilson, W. A., On semi-metric spaces, Amer. J. Math. 53 (1931), 361373.Google Scholar