Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-05T19:41:12.339Z Has data issue: false hasContentIssue false

The Continuous Hochschild Cochain Complex of a Scheme

Published online by Cambridge University Press:  20 November 2018

Amnon Yekutieli*
Affiliation:
Department of Mathematics, Ben Gurion University, Be'er Sheva 84105, Israel, email: [email protected], http://www.math.bgu.ac.il/∼amyekut
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let $X$ be a separated finite type scheme over a noetherian base ring $\mathbb{K}$. There is a complex ${{\hat{C}}^{\cdot }}\left( X \right)$ of topological ${{\mathcal{O}}_{X}}$-modules, called the complete Hochschild chain complex of $X$. To any ${{\mathcal{O}}_{X}}$-module $\mathcal{M}$—not necessarily quasi-coherent—we assign the complex $Hom_{{{\mathcal{O}}_{X}}}^{\text{cont}}\left( {{{\hat{C}}}^{\cdot }}\left( X \right),\,\mathcal{M} \right)$ of continuous Hochschild cochains with values in $\mathcal{M}$. Our first main result is that when $X$ is smooth over $\mathbb{K}$ there is a functorial isomorphism

$$Hom_{{{\mathcal{O}}_{X}}}^{\text{cont}}\left( {{C}^{\cdot }}\left( X \right),\,M \right)\,\cong \,\text{R}\,Hom_{{{\mathcal{O}}_{X}}^{2}}^{{}}\,\left( {{\mathcal{O}}_{X}},\,M \right)$$

in the derived category $\text{D}\left( \text{Mod}\,{{\mathcal{O}}_{{{X}^{2}}}} \right)$, where ${{X}^{2}}\,:=\,X\,{{\times }_{\mathbb{K}}}\,X$.

The second main result is that if $X$ is smooth of relative dimension $n$ and $n!$ is invertible in $\mathbb{K}$, then the standard maps $\text{ }\!\!\pi\!\!\text{ }\,\text{:}\,{{\hat{C}}^{-q}}\left( X \right)\,\to \,\Omega _{X/\mathbb{K}}^{q}$ induce a quasi-isomorphism

$$Hom_{{{\mathcal{O}}_{X}}}^{{}}\,\left( \underset{q}{\mathop \oplus }\,\,\Omega _{X/\mathbb{K}}^{q}\,\left[ q \right],\,M \right)\,\,\to \,Hom_{{{\mathcal{O}}_{X}}}^{\text{cont}}\left( {{{\hat{C}}}^{\cdot }}\left( X \right),\,M \right).$$

When $M\,=\,{{\mathcal{O}}_{X}}$ this is the quasi-isomorphism underlying the Kontsevich Formality Theorem.

Combining the two results above we deduce a decomposition of the global Hochschild cohomology

$$\text{Ext}_{{{\mathcal{O}}_{{{X}^{2}}}}}^{i}\,\left( {{\mathcal{O}}_{X}}\,,\,M \right)\,\cong \,\underset{q}{\mathop \oplus }\,\,\,{{\text{H}}^{i-q}}\,\left( X,\,\left( \underset{{{\mathcal{O}}_{X}}}{\overset{q}{\mathop \Lambda }}\,\,{{T}_{X/\mathbb{K}}} \right)\,{{\otimes }_{{{\mathcal{O}}_{X}}}}\,M \right),$$

where ${{T}_{X/\mathbb{K}}}$ is the relative tangent sheaf.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2002

References

[EGA I] Grothendieck, A. and Dieudonné, J., Éléments de Géometrie Algébrique I. Springer, Berlin, 1971.Google Scholar
[EGA IV] Grothendieck, A. and Dieudonné, J., Éléments de Géometrie Algébrique IV. Inst. Hautes E´tudes Sci. Publ. Math. 32, 1967.Google Scholar
[GS] Gerstenhaber, M. and Schack, S. D., A Hodge-type decomposition for commutative algebra cohomology. J. Pure Appl. Algebra 48 (1987), 229247.Google Scholar
[HKR] Hochschild, G., Kostant, B. and Rosenberg, A., Differential forms on regular affine algebras. Trans. Amer. Math. Soc. 102 (1962), 383408.Google Scholar
[Ko] Kontsevich, M., Deformation quantization of Poisson manifolds I. Eprint q-alg/9709040.Google Scholar
[Lo] Loday, J.-L., Cyclic Homology. Springer, Berlin, 1992.Google Scholar
[RD] Hartshorne, R., Residues and Duality. Lecture Notes in Math. 20, Springer, Berlin, 1966.Google Scholar
[Sw] Swan, R. G., Hochschild cohomology of quasiprojective schemes. J. Pure Appl. Algebra 110 (1996), 5780.Google Scholar
[Ts] Tsygan, B., Formality conjectures for chains. Eprint QA/9904132.Google Scholar
[Ye1] Yekutieli, A., An Explicit Construction of the Grothendieck Residue Complex. With an appendix by P. Sastry. Astérisque 208, 1992.Google Scholar
[Ye2] Yekutieli, A., Smooth formal embeddings and the residue complex. Canad. J. Math. 50 (1998), 863896.Google Scholar
[Ye3] Yekutieli, A., Residues and differential operators on schemes. Duke Math. J. 95 (1998), 305341.Google Scholar