Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-05T16:14:03.094Z Has data issue: false hasContentIssue false

A Construction for Wythoffian Polytopes

Published online by Cambridge University Press:  20 November 2018

Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper contains an account of a simple method of deriving the coordinates of the vertices of any uniform polytope or honeycomb (degenerate polytope) whose symmetry group is generated by reflections.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1954

References

1. Coxeter, H. S. M., The pure Archimedean polytopes in six and seven dimensions, Proc. Cambridge Phil. Soc, 24 (1928), 1–9.Google Scholar
2. Coxeter, H. S. M., Polytopes with regular-prismatic vertex figures, Phil. Trans. Royal Soc. (A), 229 (1930), 329–425.Google Scholar
3. Coxeter, H. S. M., Polytopes with regular-prismatic vertex figures, II, Proc. London Math. Soc, 34 (1932), 126–189.Google Scholar
4. Coxeter, H. S. M., Wythoff's construction for uniform polytopes, Proc. London Math. Soc. (2), 38 (1935), 327–339.Google Scholar
5. Coxeter, H. S. M., Regular and semiregular polytopes, Math. Z., 46 (1940), 380–407.Google Scholar
6. Coxeter, H. S. M., Regular polytopes (London, 1948; New York, 1949).Google Scholar
7. Elte, E. L., The semiregular polytopes of the hyperspaces (Groningen, 1912).Google Scholar
8. Gosset, T., On the regular and semiregular figures in space of n dimensions, Messenger of Math., 29 (1900), 43–48.Google Scholar
9. Robinson, G. de B., On the fundamental region of a group and the family of configurations which arise therefrom, J. London Math. Soc, 6 (1931), 70–75.Google Scholar
10. Schläfli, L., Réduction d'une intégrale multiple qui comprend Varc du cercle et Vaire du triangle sphérique comme cas particuliers, J. de Math., 20 (1855), 359–394; Ges. Math. Abh., 2 (Basel, 1953), 164–190.Google Scholar
11. Schoute, P. H., Analytical treatment of the polytopes regularly derived from the regular polytopes I, Ver. der K. Akad. Van Wet. te Amsterdam (I), 11.3 (1911), 1–83.Google Scholar
12. Schoute, P. H., Analytical treatment of the polytopes regularly derived from the regular polytopes II, III, IV, Ver. der K. Akad. van Wet. te Amsterdam (I), 11.5 (1913), 1–108.Google Scholar
13. Schoute, P. H., The characteristic numbers of the prismotope, Proc. Royal Acad. Sci., Amsterdam, 14 (1911), 424–428.Google Scholar
14. Boole Stott, A., Geometrical deduction of the semiregular from regular polytopes and space fillings, Ver der K. Akad. van Wet. te Amsterdam (I), 11.1 (1910).Google Scholar
15. Wythoff, W. A., A relation between the polytopes of the C600-family, K. Akad. van Wet. te Amsterdam, Proc. of the Section of Sciences, 20 (1918), 966–970.Google Scholar