Published online by Cambridge University Press: 20 November 2018
In a previous paper [1], the authors introduced and studied the notion of special conformally flat spaces and quasi-umbilical hypersurfaces. In that paper, the authors proved that every conformally flat space of codimension one in a Euclidean space is special and, conversely, every special conformally flat space can be isometrically immersed in a Euclidean space as a quasi-umbilical hypersurface.
In the present paper, the authors study the conformally flat spaces of codimension 2 in a Euclidean space. (Manifolds, mappings, functions, etc. are assumed to be sufficiently differentiate and we shall restrict ourselves only to manifolds of dimension n > 3.)