Published online by Cambridge University Press: 20 November 2018
Recall the classical criterion for the complete decomposability of exterior vectors: the completely decomposable vectors in ∧pRn, R a field, are precisely the “Plücker vectors,” i.e. those whose coordinates (relative to the standard bases for ∧pRn) satisfy the Plücker equations. For R an arbitrary commutative ring, completely decomposable exterior vectors are still Plücker vectors, but the converse is not generally true. Rings for which the converse is true (for all 1 ≤ p ≤ n) are called Towber rings. Noetherian Towber rings are regular and, in fact, are characterized by the property that every Plücker vector in ∧2R4 is completely decomposable. (See [10] for these two results as well as for the above mentioned facts.) The present note develops a new characterization of Towber rings, combining it with results of Kleiner [9] and Estes-Matijevic [5] in (1) below.