Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-20T14:15:42.472Z Has data issue: false hasContentIssue false

Colouring of Trivalent Polyhedra

Published online by Cambridge University Press:  20 November 2018

Anton Kotzig*
Affiliation:
Komensky University, Bratislava, Czechoslovakia
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

By an Euler polyhedron of valence three or a trivalent convex polyhedron in Euclidean 3-space (4) we mean in the present paper an Euler polyhedron in the sense of Steinitz (8, p. 113), such that each vertex is incident with exactly three edges.

In the present paper we establish a theorem concerning the colouring of trivalent polyhedra. A specialization of this theorem solves the following problem implicit in Eberhard (1, p. 84): Does there exist a trivalent Euler polyhedron with an odd number of faces such that the number of edges incident with any face is divisible by three?

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1965

References

1. Eberhard, V., Zur Morphologie der Polyeder (Leipzig, 1891).Google Scholar
2. Errera, A., Sur le problème des quatre couleurs, Bull. Acad. Roy. Belgique (1947), 807-821.Google Scholar
3. Errera, A., Une vue d'ensemble sur le problème des quatre couleurs, Rend. sem. mat. Torino, 11 (1951-52), 519.Google Scholar
4. Grùnbaum, B. and Motzkin, T. S., The number of hexagons and the simplicity of geodesies on certain polyhedra, Can. J. Math., 15 (1963), 744751.Google Scholar
5. König, D., Théorie der endlichen und unendlichen Graphen (Leipzig, 1934).Google Scholar
6. Motzkin, T. S., The evenness of the number of edges of a convex polyhedron, Amer. Math. Soc. Not., 11 (1963), 242, and Proc. Nat. Acad. Sci. U.S.A., 52 (1964), 4445.Google Scholar
7. Ringel, G., Färbungsprobleme auf Flächen und Graphen (Berlin, 1959).Google Scholar
8. Steinitz, E., Vorlesungen über die Théorie der Polyeder (Berlin, 1934).Google Scholar