Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-20T08:48:48.988Z Has data issue: false hasContentIssue false

Cohomology of Complex Projective Stiefel Manifolds

Published online by Cambridge University Press:  20 November 2018

L. Astey
Affiliation:
Centro de Investigación del IPN, Apartado Postal 14-740, México, 07000 D.F. email: [email protected]
S. Gitler
Affiliation:
University of Rochester, Rochester, NY 14627-0001, USA email: [email protected]
E. Micha
Affiliation:
Centro de Investigación del IPN, Apartado Postal 14-740, México, 07000 D.F. email: [email protected]
G. Pastor
Affiliation:
Instituto Tecnológico Autónomo de México, Rio Hondo No. 1, San Angel, México, 01000 D.F. email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The cohomology algebra mod $p$ of the complex projective Stiefel manifolds is determined for all primes $p$. When $p=2$ we also determine the action of the Steenrod algebra and apply this to the problem of existence of trivial subbundles of multiples of the canonical line bundle over a lens space with 2-torsion, obtaining optimal results in many cases.

Keywords

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1999

References

[1] Baum, P. and Browder, W., The cohomology of quotients of classical groups. Topology 3(1965), 305336.Google Scholar
[2] Borel, A., Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts. Ann.Math. 57(1953), 115207.Google Scholar
[3] Gitler, S. and Handel, D., The projective Stiefel manifolds, I. Topology 7(1967), 3946.Google Scholar
[4] Massey, W. S. and Peterson, F. P., The cohomology structure of certain fibre spaces, I. Topology 4(1965), 4765.Google Scholar
[5] Ruiz, C., The cohomology of the complex projective Stiefel manifold. Trans. Amer. Math. Soc. 146(1969), 541547.Google Scholar
[6] Shay, P. B., modp Wu formulas for the Steenrod algebra and the Dyer-Lashof algebra. Proc. Amer. Math. Soc. 63(1977), 339347.Google Scholar
[7] Thomas, E., Seminar on fiber spaces. Lecture Notes in Math. 13, Springer-Verlag, Heidelberg, 1966.Google Scholar