Article contents
A Classification of Homogeneous Surfaces
Published online by Cambridge University Press: 20 November 2018
Extract
Throughout this paper a surface is a 2-dimensional (not necessarily compact) complex manifold. A surface X is homogeneous if a complex Lie group G of holomorphic transformations acts holomorphically and transitively on it. Concisely, X is homogeneous if it can be identified with the left coset space G/H, where if is a closed complex Lie subgroup of G. We emphasize that the assumption that G is a complex Lie group is an essential part of the definition. For example, the 2-dimensional ball B2 is certainly “homogeneous” in the sense that its automorphism group acts transitively. But it is impossible to realize B2 as a homogeneous space in the above sense. The purpose of this paper is to give a detailed classification of the homogeneous surfaces. We give explicit descriptions of all possibilities.
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 1981
References
- 12
- Cited by