Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-22T21:31:21.563Z Has data issue: false hasContentIssue false

Classes D'homotopie de Surfaces Avec Rebroussements et Queues D'aronde dans ℝ3

Published online by Cambridge University Press:  20 November 2018

Rémi Langevin
Affiliation:
UFR Mathématiques, Laboratoire de Topologie URA CNRS 755, Université de Dijon, 214 rue de Mirande, 21004 Dijon Cedex, France e-mail: [email protected]
Gilbert Levitt
Affiliation:
UFR Mathématiques, URA CNRS 7408, Université Paul Sabatier, 118 route de Narbonne 31062 Toulouse Cedex, Francee-mail:, [email protected]
Harold Rosenberg
Affiliation:
UFR Mathématiques, Université Paris 7, 2 place Jussieu, 75001 Paris France
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'

Keywords

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1995

References

[Arl] Arnold, V.I., Wave frontevolution and equivariant Morse lemma, Comm. Pure. Appl. Math. 29(1976), 557582.Google Scholar
[Ar2] Arnold, V.I., Catastrophe theory, Springer Verlag, 1984.Google Scholar
[El] Eliasberg, Ja. M., On singularities of folding type, Izv. Akad. Nauk SSSR Ser. Mat. 34(1970), 11101126. Math. USSR-Izv. 4(1970), 11191134.Google Scholar
[Grl] Gromov, M., A topological technique for the construction of solutions of differential equations and inequalities, Actes Congrès Intern. Math. Nice 2(1970), 221225.Google Scholar
[Gr2] Gromov, M., Partial differential relations, Ergebnisse Math. 9, Springer Verlag, 1986. p. 339.Google Scholar
[Ha] Haefliger, A., Quelques remarques sur les applications différentiables d'une surface dans le plan, Ann. Inst. Fourier 10(1960), 4760.Google Scholar
[HH] Haas, J. and Hughes, J., Immersions of surfaces in 3-manifolds, Topology 24(1985), 97112.Google Scholar
[JT] James, J. and Thomas, E., Note on the classification of cross-sections, Topology 4(1966), 351359.Google Scholar
[Pi] Pinkall, U., Regular homotopy classes of immersed surfaces, Topology 24(1985), 421434.Google Scholar