Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-26T13:20:11.590Z Has data issue: false hasContentIssue false

The Class Number of the Cyclotomic Field

Published online by Cambridge University Press:  20 November 2018

N. C. Ankeny
Affiliation:
Princeton University
S. Chowla
Affiliation:
Institute for Advanced Study
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let g denote an odd prime, and h = h(g) the class number of the cyclotomic field R(), where is a primitive gth root of unity. It is known that we can write

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1951

References

1. Ankeny, N. C. and Chowla, S., On the class number of the cyclotomic field, Proc. Nat. Acad. Sci. (U.S.A.), vol. 39 (1949), 529532.Google Scholar
2. Brauer, R., On the Zeta functions of algebraic number fields (II), Amer. J. Math., vol. 72 (1950), 739746.Google Scholar
3. Landau, E., Handbuch der Lehre von der Verteilung der Primzahlen, Berlin, 1909.Google Scholar
4. Selberg, A., Contributions to the theory of DirichltVs L-Functions, Skrifter utgitt av Det Norske Videnskaps-Akademi i Oslo, I Mat.-Naturv. Klasse. 1946, No. 3.Google Scholar
5. Titchmarsh, E. C., On the divisor problem, Rendiconti del Circolo Matematico di Palermo, vol. 54 (1930), 414429.Google Scholar
6. Walfisz, A., Zur additiven Zahlentheorie, Math. Zeit., vol. 40 (1936), 598601.Google Scholar