Published online by Cambridge University Press: 20 November 2018
In an earlier paper (1), published in this journal, a necessary condition was given which the reciprocal of a polynomial without multiple roots must satisfy in order to be a characteristic function. This condition is, however, valid for a wider class of functions since it can be shown (2, theorem 2 and corollary to theorem 3) that it holds for all analytic characteristic functions. The proof given in (1) is elementary and has some methodological interest since it avoids the use of theorems on singularities of Laplace transforms. Moreover the method used in (1) yields some additional necessary conditions which were not given in (1) and which do not seem to follow easily from the properties of analytic characteristic functions.