Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-16T17:01:24.813Z Has data issue: false hasContentIssue false

Cercles de Remplissage and Asymptotic Behaviour

Published online by Cambridge University Press:  20 November 2018

Paul Gauthier*
Affiliation:
Université de Montréal, Montréal, Québec
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In 1908, Lindelöf showed that if w = f(x) is a bounded holomorphic function in a sector S: |arg z| < θ1, and if f(z) has an asymptotic value w0 as z tends to ∞ along a half-ray in S; then f(z) tends uniformly to w0 as z tends to ∞o within any sector |arg z| ≦ θ, 0 ≦ θ < θ1. Montel (8) later replaced the condition that f(z) be bounded by the condition that f(z) be meromorphic and omitted three values. The following is an immediate consequence of the Lindelöf-Montel theorem.

THEOREM 1. Let w = f(x) be a function meromorphic in the sector | arg z| < θ1, and let f(z) tend to a value w0 as z → ∞ along the positive real axis.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1969

References

1. Bagemihl, F. and Seidel, W., Some boundary properties of analytic functions, Math. Z. 61 (1954), 186199.Google Scholar
2. Gauthier, P., Cercles de remplissage and asymptotic behaviour along circuitous paths (to appear in Can. J. Math.).Google Scholar
3. Gavrilov, V. I., On a theorem of A. L. Shaginjan, Vestnik Moskov. Univ. Ser. I Mat. Meh., no. 2 (1966), 310. (Russian)Google Scholar
4. Lange, L. H., Sur les cercles de remplissage non-Euclidiens, Ann. Sci. École Norm. Sup. (3) 77 (1960), 257280.Google Scholar
5. Lindelôf, E., Calcul des résidus (Chelsea, New York, 1947).Google Scholar
6. Marty, F., Recherches sur la répartition des valeurs d'une fonction méromorphe, Ann. Fac. Sci. Univ. Toulouse (3) 23 (1931), 183261.Google Scholar
7. Milloux, H., Sur le théorème de Picard, Bull. Soc. Math. France 53 (1925), 181207.Google Scholar
8. Montel, P., Sur les familles de fonctions analytiques qui admettent des valeurs exceptionnelles dans un domaine, Ann. Sci. École Norm. Sup. (3) 29 (1912), 487535.Google Scholar
9. Ostrowski, A., Uber Folgen analytischer Funktionen und einige Verschdrfungen des Picardschen Satzes, Math. Z. 24 (1925), 215258.Google Scholar
10. Rung, D. C., Behavior of holomorphic functions in the unit disk on arcs of positive hyperbolic diameter (to appear in J. Math. Kyoto Univ.).Google Scholar
11. Seidel, W., Holomorphic functions with spiral asymptotic values, Nagoya Math. J. 14 (1959), 159171.Google Scholar
12. Stebbins, J., Spiral asymptotic values of functions meromorphic in the unit disk, Nagoya Math. J. 30 (1967), 247262.Google Scholar
13. Tse, K.-F., Some results on value distribution of meromorphic functions in the unit disk, Nagoya Math. J. (to appear).Google Scholar
14. Valiron, G., Compléments au théorème de Picard-Julia, Bull. Sci. Math. SI (1927), 167183.Google Scholar
15. Yosida, K., On a class of meromorphic functions, Proc. Phys.-Math. Soc. Japan (3) 16 (1934), 227235.Google Scholar