Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-20T06:59:14.351Z Has data issue: false hasContentIssue false

Boundary Value Problems Associated With the Tensor Laplace Equation

Published online by Cambridge University Press:  20 November 2018

G. F. D. Duff*
Affiliation:
Massachusetts Institute of Technology and University of Toronto
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The boundary value problems considered in this paper relate to harmonic p-tensors on Riemannian manifolds with boundary. We study the equation of Beltrami-Laplace

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1953

References

1. Bidal, P. and de Rham, G., Les formes différentielles harmoniques, Comment. Math. Helv., 19 (1946), 149.Google Scholar
2. Duff, G. F. D. and Spencer, D. C., (a) Harmonic tensors on manifolds with boundary, Proc. Nat. Acad. Sci., 37 (1951), 614619.Google Scholar
Duff, G. F. D. and Spencer, D. C., (b) Harmonic tensors on Riemannian manifolds, Ann. Math., 56 (1952), 128156.Google Scholar
3. Garabedian, P. R. and Spencer, D. C., A complex tensor calculus for Kàhler manifolds, to appear in Acta Math Google Scholar
4. Giraud, G., Equations et systémes d'équations oú figurent des valeurs principales d-intégrales, C. R. Acad. Sci., Paris, 204 (1937), 628630.Google Scholar
5. Hodge, W. V. D., The theory and applications of harmonie integrals (Cambridge, 1941).Google Scholar
6. Kodaira, K., Harmonie fields in Riemannian manifolds, Ann. Math., 50 (1949), 587665.Google Scholar
7. Love, A. E. H., The mathematical theory of elasticity (Cambridge, 1927).Google Scholar
8. de Rham, G. and Kodaira, K., Harmonic integrals, Mimeographed lectures, Institute for Advanced Study, 1950.Google Scholar