Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-12T01:45:08.473Z Has data issue: false hasContentIssue false

A Bivariant Chern Character, II

Published online by Cambridge University Press:  20 November 2018

Xiaolu Wang*
Affiliation:
University of Maryland College Park, Maryland, U.S.A.20742
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In [Con2] Connes introduced cyclic cohomology HC*(A) for an associative algebra A. When A is a complex algebra he constructed a Chern character for p-summable Fredholm modules over A taking values in HC*(A). As a very special case, when X is a closed C-manifold and A = C (X), this construction recovers the usual Chern character, which is a rational isomorphism from the K-homology K0(X) to , the even dimensional deRham homology of X.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1992

References

[Arv] Arveson, W., The harmonie analysis of automorphism groups, Operator algebras and applications, Proc. Symposia Pure Math. 38(1982), Part I, 199269.Google Scholar
[B-D-F] Brown, L.G., Douglas, R. and Fillmore, P.A., Extensions of C* -algebras and K-homology, Ann. of Math. (2) 105(1977), 265324.Google Scholar
[Bou] Bourbaki, N., Algèbre, Chap. 10: Algèbre homologique, 1970.Google Scholar
[Bur] Burghelea, D., Cyclic homology and algebraic K-theory of topological spaces 1, Boulder Conference on Algebraic AT-theory (1983), Contemp. Math. 55 Part I, 1986.Google Scholar
[Bus] Busby, R.C., Double centralizers and extensions of C* -algebras, Trans. Amer. Math. Soc. 132(1968), 7999.Google Scholar
[C-E] Cartan, H. and Eilenberg, S., Homological Algebra, Princeton University Press, 1956.Google Scholar
[C-E-S] Christensen, E., Effros, E.G. and Sinclair, A., Completely bounded multilinear maps and C* -algebras, Invent. Math., 90(1987), 279296.Google Scholar
[Conl] Connes, A., C*-algèbres et géométrie différentielle, Acad C.R. Sci. Paris 290(1980), 599604.Google Scholar
[Con2] Connes, A., The Chern character in K-homology, Noncommutative Differential Geometry, I, Publ. IHES 62(1985), 41144.Google Scholar
[Con3] ,Cohomologie cyclique et fondeurs Extn, C.R.Acad. Sci. Paris 296(1983), 953958.Google Scholar
[Co-Cu] Connes, A. and Cuntz, J., Quasihomomorphismes, cohomologie cyclique etpositivité, Commun. Math. Phys. 114(1988), 515526.Google Scholar
[Co-Kl] Connes, A. and Karoubi, M., Caractère multiplicatif d'un module de Fredholm, Acad C.R. Sci. Paris 299(1984), 963968.Google Scholar
[Co-K2] Connes, A. and Karoubi, M., Caractère multiplicatif d'un module de Fredholm, k-theory, (1988).Google Scholar
[Cunl] Cuntz, J., Generalized homomorphisms between C*-algebras and KK-theory, Proc. of Math.-Phys. Conf. (ZIF Bielefeld 1981), Springer Lecture Notes in Math. 1031, 180195.Google Scholar
[Cun2] Cuntz, J., Anew look at KK-theory, k-theory (1987).Google Scholar
[D-H-K] Douglas, R.G., Hurder, S. and Kaminker, J., Toeplitz operators and thêta-invariant: the case of S1, Contemporary Math. A.M.S. 19(1988), 1141.Google Scholar
[E] Effros, E.G., Advances in quantized functional analyis, Proc. I.C.M. 1986, 906916.Google Scholar
[E-K] Effros, E.G. and Kishimoto, Module maps and Hoschschild-Johnson cohomology, Indiana J. Math, to appear.Google Scholar
[E-N-N] Elliott, G.A., Natsume, T. and R. Nest, Cyclic cohomologyfor one-parameter smooth crossed products. Acta Math. 160(1988), 285305.Google Scholar
[E-S] Getzler, E. and Szenes, A., On the Chern character of a theta-summable Fredholm module, preprint.Google Scholar
[F-W] Farrell, F.T. and Wagoner, J.B., Infinite matrices in algebraic K-theory and topology, Comment. Math. Helvet. 47(1972), 474501.Google Scholar
[Gl] Goodwillie, T., Cyclic homology and the free loopspace, Topology 24(1985), 187215.Google Scholar
[G2] Goodwillie, T., Relative algebraic K-theory and cyclic homology, Ann. of Math. 24(1986), 347402.Google Scholar
[Gro] Grothendieck, A., Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. 16(1955).Google Scholar
[Hig] Higson, N.,A characterization of KK-theory Pacific! of Math 126(1987), 253276.Google Scholar
[H-J] Hood, C.E. and S, J.D.. Jones, Some algebraic properties of cyclic homology groups, A'-theory (1987) 361384.Google Scholar
[J-K] Jones, J. and Kassel, C., Bivariant cyclic theory, (Aug. 1988), to appear in AT-theory.Google Scholar
[Kar] Karoubi, M., Homologie cyclique et K-théorie algébrique, I et II, C.R. Acad. Sci. Paris 297(1983), 447- 450 et 513516.Google Scholar
[Kaspl] Kasparov, G.G., Hilbert C*-modules: Theorems of Stinespring and Voiculescu, J. Operator Theory 4(1980), 133150.Google Scholar
[Kasp2] Kasparov, G.G.,K-functor and extensions of C*-algebras Izv. Akad. Nauk SSSR. Ser. Math 44(1980), 571- 636.Google Scholar
[Kassl] Kassel, C., Cyclic homology, comodules, and mixed complexes, J. of Algebra 107(1987), 195216.Google Scholar
[Kass2] Kassel, C., L'homologie cyclique des algébres enveloppantes, Invent. Math. 91(1988), 221251.Google Scholar
[Kass3] Kassel, C., K-théorie algébrique et cohomologie cyclique bivariante, C.R. Acad. Sci. Paris 306(1988), 799802.Google Scholar
[Kass4] Kassel, C., Caractère de Chern bivariant, Max Planck Institut, Bonn, Preprint December 1988.Google Scholar
[L-Q] Loday, J.L. and Quillen, D., Cyclic homology and the Lie algebra homology of matrices, Comment Math. Helvetia 59(1984), 565591.Google Scholar
[Macl] MacLane, S., Homology, Springer-Verlag, 1975.Google Scholar
[Mac2] MacLane, S., Categories for the Working Mathematician, Springer-Verlag, 1971.Google Scholar
[R] Ruan, Z., Subspaces of C*-algebras, J. Funct. Anal. 76(1988), 217230.Google Scholar
[Sim] Simon, B., Trace ideals and their applications, London Math. Soc. Lecture Notes 35, Cambridge University Press, 1979.Google Scholar
[Ts] Tsygan, B.L., Homology of matrix Lie algebras over rings and Hochschild homology, Uspekhi Math. Nauk. 2 38(1983), 198199.Google Scholar
[Wl] Wang, X., Bivariant Chern Character I, preprint, May 1988; Proc. A.M.S. Summer Institute at New Hampshire, Proc. Symposia Pure Math. (2) 51(1990), 355360.Google Scholar
[W2] Wang, X., Talk at AMS Summer Institute at Bowdoin College, Maine, Aug. 1988.Google Scholar
[W3] Wang, X., KK-theoryfor topological algebras, k-theory, 5(1991), 97150.Google Scholar
[W4] Wang, X., Ext-theoryfor topological algebras, in preparation.Google Scholar
[Wodl] Wodzicki, M., The long exact sequence in cyclic homology associated with an extension of algebras, C.R. Acad. Sci. Paris 306(1988), 399403.Google Scholar
[Wod2] Wodzicki, M., Excision in cyclic homology and in rational algebraic K-theory, Annals of Math., 129(1989) 591639.Google Scholar