Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-05T01:50:35.119Z Has data issue: false hasContentIssue false

Banach Envelopes of Non-Locally Convex Spaces

Published online by Cambridge University Press:  20 November 2018

N. J. Kalton*
Affiliation:
University of Missouri, Columbia, Missouri
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let X be a quasi-Banach space whose dual X* separates the points of X. Then X* is a Banach space under the norm

From X we can construct the Banach envelope Xc of X by defining for xX, the norm

Then Xc is the completion of (X, ‖ ‖c). Alternatively ‖ ‖c is the Minkowski functional of the convex hull of the unit ball. Xc has the property that any bounded linear operator L:XZ into a Banach space extends with preservation of norm to an operator .

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1986

References

1. Bennett, G., An extension of the Riesz-Thorin theorem, 1–13 in Banach spaces of analytic functions (Springer Lecture Notes 604, New York, 1977).CrossRefGoogle Scholar
2. Bennett, G., Lectures on matrix transformations of lp spaces, 36–80 in Notes on Banach spaces (University of Texas Press, Austin, Texas, 1980).Google Scholar
3. Duren, P. L., Romberg, B. W. and Shields, A L., Linear functional on Hp spaces with 0 < p < 1, J. Reine Angew. Math. 38 (1969), 3260.Google Scholar
4. James, R. C., A nonreflexive Banach space that is uniformly nonoctahedral, Israel J. Math. 18 (1974), 145155.Google Scholar
5. Kalton, N. J., The three space problem for locally bounded F-spaces, Comp. Math 37 (1978), 243276.Google Scholar
6. Kalton, N. J., Convexity conditions for non-locally convex lattices, Glasgow Math. J. 25 (1984), 141152.Google Scholar
7. Lindenstrauss, J. and Pelczynski, A., Absolutely summing operators in Lp-spaces and their applications, Studia Math. 29 (1968), 275326.Google Scholar
8. Maurey, B., Théorèmes de factorisations pour les operateurs linéaires a valeurs dans les espaces Lp , Asterique 11 (1973).Google Scholar
9. Maurey, B., Quelques problèmes de factorisation d'operateurs linéaires, Proc. Int. Congress Math. Vancouver 1974, Vol. II (1975), 7580.Google Scholar
10. Maurey, B. and Pisier, G., Series de variables aléatoires vectorielles indépendantes et propriétés géométriques des espaces de Banach, Studia Math. 58 (1976), 4590.Google Scholar
11. Pelczynski, A., All separable Banach spaces admit for every fundamental and total biorthogonal systems bounded by , Studia Math. 55 (1976), 295304.Google Scholar
12. Pisier, G., Sur les espaces de Banach qui ne contient pas uniformément de , C. R. Acad. Sci (Paris) 277 (1973), 991994.Google Scholar
13. Rolewicz, S., Metric linear spaces (Monografie Matematyczne 56, PWN, Warsaw, 1972).Google Scholar
14. Shapiro, J. H., Mackey topologies, reproducing kernels and diagonal maps on Hardy and Bergman spaces, Duke Math. J. 43 (1976), 187202.Google Scholar
15. Shapiro, J. H., Linear topological properties of the harmonic Hardy spaces hp for 0 < p < 1, Illinois J. Math, to appear.Google Scholar
16. Talagrand, M., A simple example of a pathological submeasure, Math. Ann. 252 (1980), 97102.Google Scholar
17. Wojtasczyk, P., On projections and unconditional bases in direct sums of Banach spaces II Studia Math. 62 (1978), 193201.Google Scholar
18. Wojtasczyk, P., Hp spaces, p ≦ 1 and spline systems, Studia Math. 77 (1984), 289320.Google Scholar