Article contents
Axioms for Elliptic Geometry
Published online by Cambridge University Press: 20 November 2018
Extract
Until recently the literature contained little on the axiomatic foundations of elliptic geometry that was non-analytical and independent of projective geometry. During the past decade this subject has come in for further study, notably by Busemann [2] and Blumenthal [1], who supplied such foundations. This paper presents another and, it is believed, simpler effort in the same general direction, proceeding by the familiar synthetic methods of elementary geometry and using only elementary topological notions and ideas concerning metric spaces. Specifically, elliptic 2-space is obtained on the basis of six axioms, most notable of which is one assuming the existence of translations. The writer wishes to express his deep appreciation to Herbert Busemann for his invaluable help.
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 1952
References
- 1
- Cited by