Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-26T01:09:03.436Z Has data issue: false hasContentIssue false

Arithmetical Semigroup Rings

Published online by Cambridge University Press:  20 November 2018

Bonnie R. Hardy
Affiliation:
University of Nebraska, Lincoln, Nebraska
Thomas S. Shores
Affiliation:
University of Nebraska, Lincoln, Nebraska
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Throughout this paper the ring R and the semigroup S are commutative with identity; moreover, it is assumed that S is cancellative, i.e., that S can be embedded in a group. The aim of this note is to determine necessary and sufficient conditions on R and S that the semigroup ring R[S] should be one of the following types of rings: principal ideal ring (PIR), ZPI-ring, Bezout, semihereditary or arithmetical. These results shed some light on the structure of semigroup rings and provide a source of examples of the rings listed above. They also play a key role in the determination of all commutative reduced arithmetical semigroup rings (without the cancellative hypothesis on S) which will appear in a forthcoming paper by Leo Chouinard and the authors [4].

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1980

References

1. Asano, K., Über Kommutative Ringe, in dene jedes Ideal als Produkt von Primidealen darstellbar ist, J. Math. Soc. Japan 3 (1951), 8290.Google Scholar
2. Bourbaki, N., Elements of mathematics, commutative algebra (Hermann, Paris, 1972).Google Scholar
3. Connell, I. G., On the group ring, Can. J. Math. 15 (1963), 650685.Google Scholar
4. Chouinard, L., Hardy, B. and Shores, T., Arithmetical and semiher editor y semigroup rings, preprint.Google Scholar
5. Clifford, A. H. and Preston, G. B., The algebraic theory of semigroups, Vol. I (Amer. Math. Soc, Providence, R.I., 1961).Google Scholar
6. Endo, S., On semi-hereditary rings, J. Math. Soc. Japan 13 (1961), 109119.Google Scholar
7. Fuchs, L., Über die Ideale Arithmetischer Ringe, Comment. Math. Helv. 23 (1949), 334341.Google Scholar
8. Fuchs, L., Infinite abelian groups (Academic Press, New York, 1970).Google Scholar
9. Griffin, M., Prüfer rings with zero divisors, J. reine angew. Math. 239/240 (1970), 5567.Google Scholar
10. Grothendieck, A. and Dieudonné, J., Elements de géométrie algébrique I (Springer-Verlag, Berlin, 1971).Google Scholar
11. Gilmer, R. and Parker, T., Semigroup rings as Prüfer rings, Duke Math. J. 41 (1974), 219230.Google Scholar
12. Gulliksen, T., Ribenboim, R. and Viswanathan, T. M., An elementary note on group rings, J. reine angew. Math. 242 (1970), 148162.Google Scholar
13. Goursaud, J. M. and Valette, J., Anneaux de groupe hereditaires et semi-hereditaires, J. Algebra 34 (1975), 205212.Google Scholar
14. Jensen, C. U., Arithmetical rings, Acta. Math. Hungr. 17 (1966), 115123.Google Scholar
15. Kozhukhov, I. B., Chain semigroup rings, (Russian), Uspekhi Matem. Nauk. 29 (1974), 169170.Google Scholar
16. Lambek, J., Lectures on rings and modules (Blaisdell, Waltham, Mass., 1966).Google Scholar
17. Larsen, M., Lewis, W. and Shores, T., Elementary divisor rings and finitely presented modules, Trans. Amer. Math. Soc. 187 (1974), 231248.Google Scholar
18. Larsen, M. D. and McCarthy, P. J., Multiplicative theory of ideals (Academic Press, New York, 1971).Google Scholar
19. Nicholson, W. K., Local group rings, Can. Bull. Math. 15 (1972), 137138.Google Scholar
20. Warfield, R. B., Decomposability of finitely presented modules, Proc. Amer. Math. Soc. 25 (1970), 167172.Google Scholar
21. Zariski, O. and Samuel, P., Commutative algebra I (Princeton, Van Nostrand, 1958).Google Scholar