No CrossRef data available.
Published online by Cambridge University Press: 20 November 2018
Let $\mathcal{H}$ be a complex separable Hilbert space and
$\mathcal{L}\left( \mathcal{H} \right)$ denote the collection of bounded linear operators on
$\mathcal{H}$. In this paper, we show that for any operator
$A\,\in \,\mathcal{L}\left( \mathcal{H} \right)$, there exists a stably finitely
$\left( \text{SI} \right)$ decomposable operator
${{A}_{\epsilon }}$, such that
$\left\| A-{{A}_{\epsilon }} \right\|\,<\,\epsilon$ and
${{\mathcal{A}}^{\prime }}\left( {{A}_{\epsilon }} \right)/\text{rad}\,{{\mathcal{A}}^{\prime }}\left( {{A}_{\epsilon }} \right)$ is commutative, where rad
${{\mathcal{A}}^{\prime }}\left( {{A}_{\epsilon }} \right)$ is the Jacobson radical of
${{\mathcal{A}}^{\prime }}\left( {{A}_{\epsilon }} \right)$. Moreover, we give a similarity classification of the stably finitely decomposable operators that generalizes the result on similarity classification of Cowen–Douglas operators given by C. L. Jiang.