Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-26T00:26:36.107Z Has data issue: false hasContentIssue false

Approximately Periodic Functionals on C*-Algebras and von Neumann Algebras

Published online by Cambridge University Press:  20 November 2018

John C. Quigg*
Affiliation:
Arizona State University, Tempe, Arizona
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In the duality for locally compact groups, much use is made of a version of the Hopf algebra technique in the context of von Neumann algebras, culminating in the theory of Kac algebras [6], [14]. It seems natural to ask whether something like a Hopf algebraic structure can be defined on the pre-dual of a Kac algebra. This leads to the question of whether the multiplication on a von Neumann algebra M, viewed as a linear map m from M ⊙ M (the algebraic tensor product) to M, can be pre-transposed to give a co-multiplication on the pre-dual M*, i.e., a linear map m* from M* to the completion of M*M* with respect to some cross-norm. A related question is whether the multiplication on a C*-algebra A can be transposed to give a co-multiplication on the dual A*. Of course, this can be regarded as a special case of the preceding question by taking M = A**, where the double dual A** is identified with the enveloping von Neumann algebra of A.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1985

References

1. Choi, M. D., The full C*-a/gebra of the free group on two generators, Pacific J. Math. 87 (1980), 4148.Google Scholar
2. Connes, A., Une classification des facteurs de type III, Ann. Sci. Ecole Norm. Sup. 6 (1973), 133252.Google Scholar
3. Dieudonné, J., Treatise on analysis, Vol 2 (Academic Press, New York, 1976).Google Scholar
4. Effros, E. G. and Lance, E. C., Tensor products of operator algebras, Adv. Math. 25 (1977), 134.Google Scholar
5. Enock, M., Produit croisé d'une algèbre de von Neumann par une algèbre de Kac, J. Functional Anal. 26 (1977), 1647.Google Scholar
6. Enock, M. and Schwartz, J. M., Une dualité dans les algèbres de von Neumann, Bull. Soc. Math. France Suppl. Mem. 44 (1975), 1144.Google Scholar
7. Eymard, P., L'algèbre de Fourier d'un groupe localement compact, Bull. Soc. Math. France 92 (1964), 181236.Google Scholar
8. Jensen, H. E., Scattered C*-algebras, Math. Scand. 41 (1977), 308314.Google Scholar
9. Kitchen, J. W. Jr., Normed modules and almost periodicity, Monatsh. Math. 70 (1966), 233243.Google Scholar
10. Lance, E. C., On nuclear C*-algebras, J. Functional Anal. 12 (1973), 157176.Google Scholar
11. Nakagami, Y., Some remarks on crossed products of von Neumann algebras by Kac algebras, Yokohama Math. J. 27 (1979), 141162.Google Scholar
12. Takesaki, M., On the conjugate space of an operator algebra, Tôhoku Math. J. 10 (1958), 194203.Google Scholar
13. Tonge, A., La presque-périodicité et les coalgèbres injectives, Stud. Math. 67 (1980), 103118.Google Scholar
14. Vainerman, L. I. and Kac, G. I., Nonunimodular ring groups and Hopfvon Neumann algebras, Math. U.S.S.R. Sbornik 23 (1974), 185214.Google Scholar