Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-25T20:57:08.935Z Has data issue: false hasContentIssue false

Algèbres quasi-commutatives et carrés de Steenrod

Published online by Cambridge University Press:  20 November 2018

Bitjong Ndombol
Affiliation:
U.R.A. 0751D CNRS, Université des Sciences et Technologies de Lille, 59655 Villeneuve d’Ascq Cedex, France
M. El haouari
Affiliation:
U.R.A. 0751D CNRS, Université des Sciences et Technologies de Lille, 59655 Villeneuve d’Ascq Cedex, France
Rights & Permissions [Opens in a new window]

Résumé

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Soit $k$ un corps de caractéristique $p$ quelconque. Nous définissons la catégorie des $k$-algèbres de cochaînes fortement quasi-commutatives et nous donnons une condition nécessaire et suffisante pour que l’algèbre de cohomologie à coefficients dans ${{\text{Z}}_{2}}$ d’un objet de cette catégorie soit un module instable sur l’algèbre de Steenrod à coefficients dans ${{\text{Z}}_{2}}$.

A tout c.w. complexe simplement connexe de type fini $X$ on associe une $k$-algèbre de cochaînes fortement quasi-commutative; la structure de module sur l’algèbre de Steenrod définie sur l’algèbre de cohomologie de celle-ci coïncide avec celle de ${{H}^{*}}(X;\,{{\text{Z}}_{2}})$.

Abstract

Abstract

We define the category of strongly quasi-commutative cochain $k$-algebras, where $k$ is a field of any characteristic $p$. We give a necessary and sufficient condition which enables the cohomology algebra with ${{\text{Z}}_{2}}$-coefficients of an object in this category to be an unstable module on the ${{\text{Z}}_{2}}$-Steenrod algebra.

To each simply connected c.w. complex of finite type $X$ is associated a strongly quasi-commutative model and the module structure over the ${{\text{Z}}_{2}}$-Steenrod algebra defined on the cohomology of this model is the usual structure on ${{H}^{*}}(X;\,{{\text{Z}}_{2}})$.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1999

References

[1] Adams, J. F. and Hilton, P. J., On the chain algebra of loop space. Comment. Math. Helv. 30 (1955), 305330.Google Scholar
[2] Anick, D. J., Hopf algebras up to homotopy. J. Amer. Math. Soc. (3)2 (1989), 417451.Google Scholar
[3] Benson, D. J., Representations and cohomology II: cohomology of groups and modules. Cambridge Stud. Adv. Math. 31 .Google Scholar
[4] Ndombol, Bitjong, Algèbres de cochaînes quasi-commutatives et fibrations algébriques. J. Pure Appl. Algebra 125 (1998), 261273.Google Scholar
[6] Bullet, S. R. and Macdonald, I. G., On the Adem relations. Topology (3) 21 (1982), 329332.Google Scholar
[5] Bredon, G. E., Topology and geometry. Graduate Texts in Math. 139 , Springer Verlag, 1993.Google Scholar
[7] El haouari, M., p-Formalité des espaces. J. Pure Appl. Algebra 78 (1992), 2747.Google Scholar
[8] Halperin, S. and Lemaire, J. M., Notions of category in differential algebra. Lecture Notes in Math. 1318 (1988), 138154.Google Scholar
[9] Karoubi, M., Formes différentielles non commutatives et cohomologie à coefficients arbitraires. Trans. Amer. Math. Soc. (11) 347 (1995), 42774299.Google Scholar
[10] Karoubi, M., Formes différentielles non commutatives et opérations de Steenrod. Topology (3) 34 (1995), 699715.Google Scholar
[11] Karoubi, M., Formes topologiques non commutatives. Ann. Sci. E´ cole Norm. Sup. Se´r. 4 t. 28 fasc. 4(1995), 477492.Google Scholar
[12] Majewski, M., A cellular Lie algebramodel for spaces and its equivalence with the models of Quillen and Sullivan. Thèse Freie Universit¨at Berlin, 1996.Google Scholar
[13] Munkholm, H. J., The Eilenberg-Moore spectral sequence and strongly homotopy multiplicative maps. J. Pure Appl. Algebra 5 (1974), 150.Google Scholar
[14] Steenrod, S. and Epstein, D., Cohomology operations. Ann. of Math. Stud. 50 , Princeton Univ. Press, Princeton, NJ 1962.Google Scholar