No CrossRef data available.
Published online by Cambridge University Press: 20 November 2018
Let (X, F,) be a sigma-finite measure space. In what follows we assume p fixed, 1 < p < ∞ . Let T be a contraction of Lp(X, F, μ) (‖T‖,p ≦ 1). If ƒ ≧ 0 implies Tƒ ≧ 0 we will say that T is positive. In this paper we prove that if is a uniform sequence (see Section 2 for definition) and T is a positive contraction of Lp, then
exists and is finite almost everywhere for every ƒ ∊ Lp(X, F, μ).