No CrossRef data available.
Article contents
Absolute Continuity of Wasserstein Barycenters Over Alexandrov Spaces
Published online by Cambridge University Press: 20 November 2018
Abstract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
In this paper, we prove that on a compact, $n$-dimensional Alexandrov space with curvature at least −1, the Wasserstein barycenter of Borel probability measures ${{\mu }_{1}},\ldots ,{{\mu }_{m}}$ is absolutely continuous with respect to the $n$-dimensional Hausdorff measure if one of them is.
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 2017
References
[1]
Agueh, M. and Calier, G., Barycenters in the Wasserstein space.
SIAM J. Math. Anal.
43(2011),no. 2, 904–924.http://dx.doi.Org/10.1137/100805741
Google Scholar
[2]
Ambrosio, L. and Gigli, N., A user's guide to optimal transport.
In: Modelling and optimisation of flows on networks, Lecture Notes in Math., 2062, Springer, Heidelberg, 2013,1–155.http://dx.doi.org/10.1007/978-3-642-32160-3J
Google Scholar
[3]
Ambrosio, L., Gigli, N., and Savaré, G., Gradient flows: in metric spaces and in the space of probability measures.
Lectures in Mathematics ETH Zﺫurich,
Birkhﺫauser Verlag,
Basel, 2005.Google Scholar
[4]
Bertrand, J., Existence and uniqueness of optimal maps on Alexandrov spaces.
Adv. Math.
219(2008), no. 3, 838–851.http://dx.doi.org/10.1016/j.aim.2008.06.008
Google Scholar
[5]
Burago, D., Burago, Y., and Ivanov, S., A course in metric geometry.
Graduate Studies in Mathematics, 33, American Mathematical Society, Providence, RI,
2001.http://dx.doi.Org/10.1090/gsm/033
Google Scholar
[6]
Burago, Y., Gromov, M., and Perel'man, G., A. D. Alexandrov spaces with curvature bounded below.
Russian Math. Surveys
47(1992), no. 2,1–58.
http://dx.doi.Org/10.1070/RM1992v047n02 ABEH000877
Google Scholar
[7]
Carlier, G. and Ekeland, I., Matching for teams.
Econom. Theory
42(2010), no. 2, 397–418.http://dx.doi.Org/10.1007/sOOI99-008-041 5-z
Google Scholar
[8]
Cheeger, J., Differentiability of Lipschitz functions on metric measure spaces.
Geom. Funct. Anal.
9(1999), no. 3, 428–517. http://dx.doi.Org/10.1007/s000390050094
Google Scholar
[9]
Cordero-Erausquin, D., McCann, R., and Schmuckenschläger, M., A Riemannian interpolation inequality á la Borel, Brascamp and Lieb.
Invent. Math.
146(2001), 219–257.http://dx.doi.Org/10.1007/s00222O100160
Google Scholar
[10]
Figalli, A. and Juillet, N., Absolute continuity of Wasserstein geodesies in the Heisenberggroup.
J. Funct. Anal.
255(2008), 133–141.http://dx.doi.Org/10.1016/j.jfa.2008.03.006
Google Scholar
[11]
Gangbo, W. and Swiech, A., Optimal maps for the multidimensional Monge-Kantorovich problem.
Comm. Pure Appl. Math.
51(1998), 23–45.http://dx.doi.Org/10.1002/(SICI)1097-0312(199801)51:1
<23::AID-CPA2>3.0.CO;2-H
3.0.CO;2-H>Google Scholar
[12]
Kellerer, H. G., Duality theorems for marginal problems.
Z. Wahrsch. Verw. Gebiete
67(1984),399–432.http://dx.doi.org/10.1007/BF00532047
Google Scholar
[13]
Kim, Y.-H. and Pass, B., Wasserstein barycenters over Riemannian manifolds.
arxiv:1412.7726
Google Scholar
[14]
Kim, Y.-H., Multi-marginal optimal transport on Riemannian manifolds.
Amer. J. Math.
137(2015), 1045–1060.http://dx.doi.org/10.1353/ajm.2015.0024
Google Scholar
[15]
McCann, R., A convexity principle for interacting gases and equilibrium crystals. Ph.D. thesis, Princeton University, 1994.Google Scholar
[16]
McCann, R., Polar factorization of maps on Riemannian manifolds.
Geom. Funct. Anal.
11(2001), 589–608.http://dx.doi.org/10.1007/PL00001679
Google Scholar
[17]
Ohta, S., Barycenters in Alexandrov spaces of curvature bounded below.
Adv. Geom.
12(2012), 571–587.Google Scholar
[18]
Otsu, Y. and Shioya, T., The Riemannian structure of Alexandrov spaces.
J. Diferential Geom.
39(1994), 629–658.Google Scholar
[19]
Pass, B., Uniqueness and Monge solutions in the multimarginal optimal transportation problem.
SIAM J. Math. Anal.
43(2011), no. 6. 2758–2775.http://dx.doi.Org/10.1137/100804917
Google Scholar
[20]
Pass, B., Multi-marginal optimal transport and multi-agent matching problems: uniqueness and structure of solutions.
Discrete Contin. Dyn. Syst.
34(2014), no. 4,1623–1639.http://dx.doi.Org/1O.3934/dcds.2O14.34.1 623
Google Scholar
[21]
Pass, B., Optimal transportation with infinitely many marginals.
J. Funct. Anal.
264(2013), no. 4, 947–963.http://dx.doi.0rg/IO.IOI6/j.jfa.2Oi2.i2.OO2
Google Scholar
[22]
Perelman, G., Elements of Morse theory on Alexandrov spaces.
St. Petersburg Math. J.
5(1994), 205–213.Google Scholar
[23]
Perelman, G. and Petrunin, A., Quasigeodesics and gradient curves in Alexandrov spaces.
http://www.math.psu.edu/petrunin/
Google Scholar
[24]
Petrunin, A., Subharmonic functions on Alexandrov space,
http://www.math.psu.edu/petrunin/
Google Scholar
[25]
Petrunin, A., Parallel transportation for Alexandrov spaces with curvature bounded below.
Geom. Funct. Anal.
8(1998), 123–148.http://dx.doi.Org/10.1007/s000390050050
Google Scholar
[26]
Petrunin, A., Semiconcave functions in Alexandrov's geometry.
Surv. Differ. Geom., 11, Int. Press, Somerville, MA, 2007, pp. 137–201.http://dx.doi.org/10.4310/SDC.2006.v11.n1.a6
Google Scholar
[27]
Rachev, S. T. and Rüschendorf, L., Mass transportation problems. Vol. I. Probability and its Applications (New York), Springer-Verlag, New York, 1998, pp. 57–106.Google Scholar
[28]
Villani, C., Topics in optimal transportation.
Graduate Studies in Mathematics, 58, American Mathematical Society, Providence, RI,
2003.http://dx.doi.Org/10.1007/b12016
Google Scholar
[29]
Zhang, H. C. and Zhu, X. P., Yau's gradient estimates on Alexandrov spaces.
J. Diferential Geom.
91(2012), 445–522.Google Scholar
You have
Access