Article contents
Absolute C-Embedding of Spaces with Countable Character and Pseudocharacter Conditions
Published online by Cambridge University Press: 20 November 2018
Extract
Absolute C-embeddings have been studied extensively by C. E. Aull. We will use his notation P = C[Q] to mean that a space satisfying property Q is C-embedded in every space having property Q that it is embedded in if (and only if) it has property P. The first result of this type is due to Hewitt [5] where he proves that if Q is “Tychonoff” then P is almost compactness. Aull [2] proves that if Q is “T4 and countable pseudocharacter” or “T4 and first countable” then P is “countably compact”. In this paper we show that P is almost compactness if Q is “Tychonoff” and any of countable pseudocharacter, perfect, or first countability. Unfortunately for the last case we require the assumption that . Finally we show that P is countable compactness if Q is Tychonoff and “closed sets have a countable neighborhood base”. In each of the above results C-embedding may be replaced by C*-embeddings and the results hold if restricted to closed embeddings.
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 1980
References
- 3
- Cited by