Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-23T01:30:53.262Z Has data issue: false hasContentIssue false

Two problems on random analytic functions in Fock spaces

Published online by Cambridge University Press:  08 July 2022

Xiang Fang*
Affiliation:
Department of Mathematics, National Central University, Chungli, Taoyuan City, Taiwan, R.O.C.
Pham Trong Tien
Affiliation:
Faculty of Mathematics, Mechanics and Informatics, VNU University of Science, Vietnam National University, Hanoi, Vietnam TIMAS, Thang Long University, Nghiem Xuan Yem, Hoang Mai, Hanoi, Vietnam e-mail: [email protected]

Abstract

Let $f(z)=\sum _{n=0}^\infty a_n z^n$ be an entire function on the complex plane, and let ${\mathcal R} f(z) = \sum _{n=0}^\infty a_n X_n z^n$ be its randomization induced by a standard sequence $(X_n)_n$ of independent Bernoulli, Steinhaus, or Gaussian random variables. In this paper, we characterize those functions $f(z)$ such that ${\mathcal R} f(z)$ is almost surely in the Fock space ${\mathcal F}_{\alpha }^p$ for any $p, \alpha \in (0,\infty )$. Then such a characterization, together with embedding theorems which are of independent interests, is used to obtain a Littlewood-type theorem, also known as regularity improvement under randomization within the scale of Fock spaces. Other results obtained in this paper include: (a) a characterization of random analytic functions in the mixed-norm space ${\mathcal F}(\infty , q, \alpha )$, an endpoint version of Fock spaces, via entropy integrals; (b) a complete description of random lacunary elements in Fock spaces; and (c) a complete description of random multipliers between different Fock spaces.

Type
Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of The Canadian Mathematical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

X. Fang is supported by MOST of Taiwan (108-2628-M-008-003-MY4).

References

Abakumov, E. and Doubtsov, E., Volterra type operators on growth Fock spaces . Arch. Math. 108(2017), 383393.CrossRefGoogle Scholar
Abramowitz, M. and Stegun, I. A., Handbook of mathematical functions with formulas, graphs, and mathematical tables, National Bureau of Standards Applied Mathematics Series, 55, U.S. Government Printing Office, Washington, DC, 1964. For sale by the Superintendent of Documents.Google Scholar
Anderson, J. M., Clunie, J., and Pommerenke, C., On Bloch functions and normal functions . J. Reine Angew. Math. 270(1974), 1237.Google Scholar
Arévalo, I., A characterization of the inclusions between mixed norm spaces . J. Math. Anal. Appl. 429(2015), 942955.CrossRefGoogle Scholar
Billard, P., Séries de Fourier aléatoirement bornées, continues, uniformément convergentes . Stud. Math. 22(1963), 309329.CrossRefGoogle Scholar
Cheng, G., Fang, X., and Liu, C., A Littlewood-type theorem for random Bergman functions . Int. Math. Res. Not. IMRN (2022). https://doi.org/10.1093/imrn/rnab018 CrossRefGoogle Scholar
Cochran, W. G., Shapiro, J. H., and Ullrich, D. C., Random Dirichlet functions: multipliers and smoothness . Can. J. Math. 45(1993), 255268.CrossRefGoogle Scholar
Da Prato, G. and Zabczyk, J., Stochastic equations in infinite dimensions, Encyclopedia of Mathematics and its Applications, 152, Cambridge University Press, Cambridge, 2014.CrossRefGoogle Scholar
Durrett, R., Probability: theory and examples, Cambridge Series in Statistical and Probabilistic Mathematics, 49, Cambridge University Press, Cambridge, 2019.CrossRefGoogle Scholar
Gao, F., A characterization of random Bloch functions . J. Math. Anal. Appl. 252(2000), 959966.CrossRefGoogle Scholar
Hedenmalm, H., Korenblum, B., and Zhu, K., Theory of Bergman spaces, Springer, New York, 2000.CrossRefGoogle Scholar
Hough, J. B., Krishnapur, M., Peres, Y., and Virág, B., Zeros of Gaussian analytic functions and determinantal point processes, University Lecture Notes, 51, American Mathematical Society, Providence, RI, 2009.CrossRefGoogle Scholar
Hu, Z. and Lv, X., Toeplitz operators from one Fock space to another . Integr. Equ. Oper. Theory 70(2011), 541559.CrossRefGoogle Scholar
Jevtić, M., Vukotić, D., and Arsenović, M., Taylor coefficients and coefficient multipliers of hardy and Bergman-type spaces, Springer, Cham, 2016.CrossRefGoogle Scholar
Kahane, J. P., Some random series of functions. 2nd ed., Cambridge Studies in Advanced Mathematics, 5, Cambridge University Press, Cambridge, 1985.Google Scholar
Ledoux, M. and Talagrand, M., Probability in Banach spaces. Isoperimetry and processes, Springer, Berlin, 1991.CrossRefGoogle Scholar
Li, D. and Queffélec, H., Introduction to Banach spaces: analysis and probability. Vol. 2, Cambridge Studies in Advanced Mathematics, 167, Cambridge University Press, Cambridge, 2018.Google Scholar
Li, H., Convergence of Taylor series in Fock spaces . Stud. Math. 220(2014), 179186.CrossRefGoogle Scholar
Littlewood, J. E., On the mean value of power series . Proc. Lond. Math. Soc. 25(1926), 328337.CrossRefGoogle Scholar
Littlewood, J. E., On mean values of power series (II) . J. Lond. Math. Soc. 5(1930), 179182.CrossRefGoogle Scholar
Lusky, W., On the Fourier series of unbounded harmonic functions . J. Lond. Math. Soc. 61(2000), 568580.CrossRefGoogle Scholar
Marcus, M. B. and Pisier, G., Necessary and sufficient conditions for the uniform convergence of random trigonometric series, Lecture Notes Series, 50, Mathematisk Insitut, Aarhus Universitet, Aarhus, 1978.Google Scholar
Marcus, M. B. and Pisier, G., Random Fourier series with applications to harmonic analysis, Princeton University Press, Princeton, NJ, 1981.Google Scholar
Nazarov, F. and Sodin, M., Random complex zeros and random nodal lines . In: Proceedings of the International Congress of Mathematicians. Vol. III, Hindustan Book Agency, New Delhi, 2010, pp. 14501484.Google Scholar
Paley, R. E. A. C. and Zygmund, A., On some series of functions (1) , Proc. Camb. Phil. Soc. 26(1930), 337357.CrossRefGoogle Scholar
Peres, Y. and Virág, B., Zeros of the i.i.d. Gaussian power series: a conformally invariant determinal process . Acta Math. 194(2005), 135.CrossRefGoogle Scholar
Salem, R. and Zygmund, A., Some properties of trigonometric series whose terms have random signs . Acta Math. 91(1954), 245301.CrossRefGoogle Scholar
Sledd, W. T., Random series which are BMO or Bloch . Michigan Math. J. 28(1981), 259266.CrossRefGoogle Scholar
Sledd, W. T. and Stegenga, D. A., An ${\mathrm{H}}^1$ multiplier theorem . Ark. Math. 19(1981), 265270.CrossRefGoogle Scholar
Sodin, M., Zeroes of Gaussian analytic functions . In: European congress of mathematics, European Mathematical Society, Zürich, 2005, pp. 445458.Google Scholar
Sodin, M. and Tsirelon, B., Random complex zeroes. I. Asymptotic normality . Israel J. Math. 144(2004), 125149.CrossRefGoogle Scholar
Sodin, M. and Tsirelon, B., Random complex zeroes. III. Decay of the hole probability . Israel J. Math. 147(2005), 371379.CrossRefGoogle Scholar
Sodin, M. and Tsirelon, B., Random complex zeroes. II. Perturbed lattice . Israel J. Math. 152(2006), 105124.CrossRefGoogle Scholar
Tung, J., Taylor coefficients of functions in Fock spaces . J. Math. Anal. Appl. 318(2006), 397409.CrossRefGoogle Scholar
Tung, J., On Taylor coefficients and multipliers in Fock spaces . Contemp. Math. 454(2008), 135147.CrossRefGoogle Scholar
Wojtaszczyk, P., Banach spaces for analysts, Cambrigde University Press, New York, 1991.CrossRefGoogle Scholar
Wulan, H., Random power series with bounded mean oscillation characteristics . Acta Math. Sci. 14(1994), 451457.Google Scholar
Zhu, K., Analysis on Fock spaces, Springer, New York, 2012.CrossRefGoogle Scholar
Zygmund, A., Trigonometric series, Cambridge University Press, New York, 1959.Google Scholar